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1. Understanding the IMA

• A three stage approach aims to make capital charges 
progressively lower and more risk sensitive
1. Basic Indicator
2. Standardised Approach
3. Advanced Measurement Approaches

Internal measurement approach (IMA) 
Loss distribution approach (LDA)
Scorecard approaches

• Aimed at flexibility, as opposed to ‘one size fits all’, but 
qualifying criteria become increasing stringent

• Floor for AMA is currently 75% of capital charge under 
standardised approach, but could be lowered.
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Quantitative Requirements for AMA

• The bank must be able to demonstrate that the risk measure used 
for regulatory capital purposes reflects a holding period of one-
year and a confidence level of 99.9 percent.

• The AMA requires historical internal loss data and exposure 
indicators in a form that is consistent with the business line/event 
type categories specified

• The model must be based on a minimum historical observation 
period of five years. However, during an initial transition period, a 
three-year historical data window might be accepted for all 
business lines and event types.

4

Unexpected Loss and Capital 
Charge

In N(µ, σ2) distribution, unexpected loss = 3σ

Capital Charge = 3 x Unexpected Loss ≈ 9σ

LossExpected Loss 99.9th percentile

Unexpected Loss

For ‘green zone’ 
market VaR models

Too high for OpRisk?
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Calculating the Capital Charge

• For each business line/risk type
IMA ORR = gamma ×× expected loss

• Assumes unexpected loss is a multiple of expected loss
• The total operational risk capital charge is the sum of all charges 

over business lines and risk types
• This assumes the worst possible case, of perfect correlation 

between individual risks
• The bank will be permitted to recognize empirical correlations in 

operational risk losses across business lines and event types, 
provided that it can demonstrate that its systems for measuring 
correlations are sound and implemented with integrity

• ?*!
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Gamma

“In determining the specific figure for gamma that will be applied 
across banks, the Committee plans to develop an industry wide 
operational loss distribution in consultation with the industry, and 
use the ratio of expected loss to a high percentile of the loss 
distribution (e.g. 99%)”. Basel Committee, CP2

• The rules proposed in CP2.5, which allow banks to calibrate 
their own gammas, do not require that gamma should be 
independent of the size of their business. 

• In fact we show that the method by which expected loss is 
calculated in CP2.5 implies that it is based on the binomial 
model, and the logical consequence of this is that gamma will be
inversely proportional to the square root of the total number of 
loss events. 

• This will vary over different LOBs and also over risk types
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Internal Measurement Approach

Line of 
Business

↓↓

Risk Types

Internal 
Fraud

External 
Fraud

Damage 
to 

Physical 
Assets

Employment 
Practices

Business 
Practices

Business 
Disruption

Process 
Management

Corporate 
Finance

Trading and 
Sales

Retail 
Banking

N, p, L

Commercial 
Banking

Payment and 
Settlements

Asset 
Management

Retail 
Brokerage
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Binomial Model

• For a particular LOB and a particular type of risk, denote the 
probability of a loss event by p and the expected loss given 
event by L 

• Assume the exposure indicator N = the total number of events 
that are susceptible to operational losses during one year

• Assume independence between loss events. Then, the 
parameters N and p and the random variable L correspond to 
those of a binomial distribution B(N, p) on the states (0, L).

• The total loss is the result of N independent 'Bernoulli' trials
where in each trial the probability of losing an amount L is p and 
the probability of losing 0 is (1 − p). 

• Then the expected total loss during the year is NpL
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Binomial Model

• In the binomial model the expected loss is µ = N p L and the 
standard deviation of loss is

σ = {√[N p (1 – p)] } L ≈ L √[N p] if p is small
• Capital charge = expected loss x gamma ≈ kσ

Gamma ≈ kσ/ µ = k L √[N p] / NpL
Gamma ≈≈ k / / √√[Np]

• Note 1: Np is the expected number of loss events during the 
time period: Banks do not need to obtain data for N and p 
separately

• Note 2: The formula shows that gamma should be low for high 
frequency risks and high for low frequency risks

10

Examples

• Example 1: If 25,000 transactions are processed in a year by a 
back office, the probability of a failed transaction is 0.04 and the 
expected loss given that a transaction has failed is $1000, the 
expected total loss over a year is $1 million.  

• Example 2: If 50 investment banking deals have been done in 
one year, the probability of an unauthorized or illegal deal is 
0.005 and the expected loss if a deal is unauthorized or illegal is 
$4 million, then the expected total loss will also be $1 million.  
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Examples

• However the distribution of the losses will be very different, so 
also will the gamma factors: assume k = 4 for both risk types

• Example 1: Gamma ≈ 4 /√1000 ≈ 4/31.6 ≈ 0.13 and so, since 
expected loss is 1m$, the capital charge is only $130,000. 

• Example 2: Gamma ≈ 4 /√0.25 = 8, leading to a capital 
requirement of $8m. 

• Note that the gamma (and capital charge) is 63 times larger for 
the corporate finance example than for the back office 
transactions processing example. 
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Extending the Binomial IMA Model

• The binomial IMA model can be extended to deal with random loss 
amounts (Binomial Gammas, Operational Risk, April 2001).

• It may also be extended to the use of alternative loss frequency
distributions (Rules and Models, Risk Magazine, January 2002).

• …and it provides a simple formula for mitigation by insurance 
(Rules and Models, Risk Magazine, January 2002).

• Finally, the parameter estimates may be based on Bayesian 
estimation (Taking Control of Operational Risk, Futures and 
Options World, December 2001)
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Loss Variability

• Let µL be the expected loss, given that the event incurs a loss
• Let σL

2 be the variance of this loss.

• Thus
gamma ≈≈ k √√[1 + (σσL/µµL)2 ]/ √√[Np]

• This shows that loss variability will increase the gamma factors: 
but much more so for low frequency high impact risks……

0

L : (µL σL
2)

Z

p

1-p

E(Z) = p µµL

Var(Z) = p(1-p) µµL
2 +  p σσL

2 ≈≈ p( µµL
2 + σσL

2)
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Effect of Loss Variability

• For high frequency, low impact loss events, the uncertainty 
about the severity of each loss is likely to be much smaller 
(compared to the expected loss) so the effect of uncertainty in 
loss severity is unlikely to increase capital charges significantly.

• But, returning to the corporate finance example, the operational
loss may be highly variable; the standard deviation of the loss 
could be equal to its expected value.  

• Consequently the gamma and the capital charge would increase 
by a factor of √(1 + (σL/µL)

2) = √2.  That is, the gamma will 
increase from 8 to about 11.3 (now about 100 times larger than 
the transactions processing example) and the capital charge will
reach $11.3 million.  
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Alternative Loss Frequency Distributions

Poisson Model for Gamma
• Another loss frequency distribution that can be used with the 

IMA is the Poisson, with parameter λ which corresponds to the 
expected number of loss events in the time horizon.

Gamma = k √√[1 + (σσL/µµL)
2] / √√λλ

and the capital charge will be given by the formula

k µµL √√ [(1 + (σσL/µµL)2) λλ ] 
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Alternative Loss Frequency Distributions

• A single parameter family probably offers insufficient scope to fit 
loss frequency distributions for all the different risk types and 
business lines encompassed by the bank's activities. 

• In that case the bank may consider using a more flexible 
distribution such as the gamma distribution, which has two 
parameters α and β and the density function 

f(x) = xαα−−11exp(−−x/ββ)/ββααΓΓ(α)  (α)  x > 0.
• The mean and variance of the gamma distribution are βα and 

β2α respectively. Therefore if the loss frequency is gamma 
distributed, 

gamma = k √√{1 + (σσL/µµL)2}/ √√α α 
and the capital charge will be given by the formula

k µµL √√ [(1 + (σσL/µµL)2) ββ22αα ] 
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Insurance

“It is currently of the view that if recognition of 
insurance is permitted, it should be limited to those 
banks that use AMA.”

“If an explicit, formulaic treatment is developed, what 
standards should be in place for qualifying insurance 
companies and insurance products, and what is an 
appropriate formula for recognition of insurance that 
is risk-sensitive but not excessively complex?”

Basel Committee CP2.5
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Insurance

• Insurance reduces the loss amount when the event occurs (an 
amount R is recovered) but introduces a premium C to be paid 
even if the event does not occur

• In the binomial model with N Bernoulli trials, an amount L – R is 
lost with probability p and C is lost with probability 1.

• The expected loss is now N[p(L – R) + C] ≈ NpL since C ≈ pR
• The standard deviation is now (L – R) √[Np] if p is small, so

gamma ≈≈ k [1 – r]/ √√[Np]
where r = R/L is the recovery rate

• Thus insurance will decrease gamma by an amount which 
depends on recovery rate.
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What is k?

• k is the ratio of the unexpected loss to the standard 
deviation. 

• For example, in the standard normal distribution and 
for the 99.9% confidence level that is recommended 
in CP2.5 for the LDA, k = 3.10, as can be found from 
standard normal tables. 

• For the binomial distribution with N = 20 and p = 0.05 
(so the expected number of loss events is 1) the 
standard deviation is 0.9747 and the 99.9% 
percentile is 5.6818, so 

k = (5.6818 − 1)/0.9747 = 4.80. 

20

Dependence Between k and 
Freuqency

• In general, the value of the multiplier k depends more on the 
type of risk than the type of distribution that is assumed for loss 
frequency. 

• High frequency risks, such as those associated with 
transactions processing, should have lower multipliers than low 
frequency risks, such a fraud.

• For example, using the Poisson distribution with expected 
number of loss events equal to 1, the standard deviation is 1 
and the 99.9% percentile is 5.84, so 

k = (5.84 − 1)/1 = 4.84; 
• But for higher frequency risks where the expected number of 

loss events is, say, 20, the Poisson distribution has standard 
deviation √20 and 99.9% percentile 35.714, so 

k = (35.714 − 20)/ √20 = 3.51.
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Dependence Between k and 
Expected Loss

• The calculation of k should take expected loss into account, as 
we did above. 

• That is, unexpected loss is defined to be the difference between
the upper percentile loss and the expected loss. 

• Normally, accountants should make special provisions in the 
balance sheet to cover expected losses, so they do not need to 
be taken into risk capital charges. 

• But some banks do not take unexpected loss to be the 
difference between the upper percentile and the expected loss, 
and this will increase capital charges for low impact high 
frequency risks in particular.

22

Regulators Approach to k

• Regulators might use their approval process to 
introduce a 'fudge factor' to the multiplier, as they 
have done with internal models for market risk. 

• They may wish to set the multiplier by calibrating the 
operational risk capital obtained from this "bottom-up" 
IMA approach to that determined from their "top-
down" approach. 

• This is what they are attempting to do with the 
multipliers (alpha and beta) for the Basic Indicator 
method and the Standardized Approach to 
operational risk capital measurement. 
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Summary of IMA

No. Loss Events Per Year

Binomial (or Poisson or Gamma)

Loss Given Event

µL and σ2
L

Loss Distribution

Analytic Formula
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Conclusions of the IMA Model

• For each line of business and risk type:
capital charge == k ×× standard deviation == gamma ×× expected loss

so
gamma = k ×× standard deviation / expected loss

• Capital charges should increase like the square root of the size of 
the business

• Capital charges should be inversely proportional to the frequency 
of events:
– High frequency events should have relatively low gammas
– Low frequency events should have relatively high gammas

• Minimum data requirements: 
– the expected number of loss events during the year  
– the expected loss given event
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2. Other Advanced Measurement 
Approaches

• We have seen that low frequency high impact risks will have the 
largest effect on the bank's total capital charge. 

• But for these risks, data are very difficult to obtain: by definition, 
internal data are likely to be sparse and unreliable. 

• Even for high frequency risks where there are normally plenty of
data available there will be problems following a merger, 
acquisition or sale of assets.

• Operational processes would change. 
• Therefore, when a bank's operations undergo a significant 

change in size, it is not sufficient to simply re-scale the capital 
charge by the square root of the size of its current operations.

26

Data Considerations

• When internal systems, processes and people are likely to have 
changed considerably the historic loss event data would no 
longer have the same relevance today 

• The bank will have the option to use 'soft' data, in the form of
opinions from industry experts. 

• For low frequency risks, where internal data hardly exist, the 
bank may use ‘soft’ data from an external consortium, which is 
available, e.g. www.moreexchange.org. 

• In both cases the ‘soft’ data are not necessarily as relevant as 
the bank would wish - there is trade-off between relevance and 
availability of data. 

• To account for this, estimation of parameters should be based 
on Bayesian methods.
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CP2.5 on External Data

In CP2.5 there is no mention of the use of expert opinions, but it is 
recognized that banks may supplement their internal loss data with 
the external industry loss data 

“….. the sharing of loss data, based on consistent definitions and
metrics, is necessary to arrive at a comprehensive assessment of
operational risk. For certain event types, banks may need to 
supplement their internal loss data with external, industry loss data”

“The bank must establish procedures for the use of external data as 
a supplement to its internal loss data.”

Basel Committee CP2.5
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Bayesian Methods

• N may be the subject of an internal management target for 
the year, but how can p and L be forecast when there is 
very little ‘hard’ data?

• How can external (‘soft’) data be used in conjunction with 
internal (‘hard’) data? 

• Classical methods (e.g. maximum likelihood estimation) 
would treat all data as the same

• Bayesian methods may be used to combine the two data 
sources in the proper fashion
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Bayes Rule

The Reverend Thomas 
Bayes was born in London 
(1702) and died in Kent 
(1761). 

His Essay Towards 
Solving a Problem in the 
Doctrine of Chances,
published posthumously in 
1763, laid the foundations 
for modern statistical 
inference.

30

Classical Bayesian
Op Risk 

applications 
include EVT

Op Risk 
applications 

include BBNs

Assume that at any point in 
time there is a ‘true’ value 

for a model parameter.

What is the probability of 
the model parameter 

given the data?

Classical vs Bayesian Methods
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Bayes’ Rule

• For two events X and Y, their joint probability is the 
product of the conditional probability and the 
unconditional probability:

Prob(X and Y) = prob(XY) prob(Y)
• Or, by symmetry:

Prob(X and Y) = prob(YX) prob(X)

prob(XY) = [ prob(YX) / prob(Y)] prob(X) 

32

Example of Bayes’ Rule

• You are in charge of client services, and your team in 
the UK has not been very reliable.

• You believe that one quarter of the time they provide 
an  unsatisfactory service, and that when this occurs 
the probability of losing the client rises from 20% to 
65%.

• If a client in the UK is lost, what is the probability that 
they have received unsatisfactory service from the 
UK team?
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Example of Bayes’ Rule

• Let X be the event ‘unsatisfactory service’ and Y be the event 
‘lose the client’. 

• Your prior belief is that prob(X) = 0.25. 
• You also know that prob(YX) = 0.65. 
• Now Bayes’ Rule can be used to find prob(XY) as follows: 
• First calculate the unconditional probability of losing the client: 

prob(Y) = prob(Y and X) + prob(Y and not X)
= prob(YX) prob(X) + prob (Ynot X) prob (not X)  
= 0.65 * 0.25 + 0.2 * 0.75 = 0.3125.

• Bayes’ Rule gives the posterior probability of unsatisfactory 
service given that a client has been lost as: 

prob(XY) = prob(YX) prob(X)/prob(Y)  
= 0.65 * 0.25 / 0.3125 = 0.52
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Interpretation of Bayes’ Rule

Posterior 
Density

∝ Sample 
Likelihood

Prior 
Density*

f θθX (θθX) ∝ f Xθθ (Xθθ)   *  f θθ(θθ)

This is how Bayesian models allow prior beliefs about the 
value of a parameter, which may be very subjective, to 

influence parameter estimates. 

prob(parametersdata) = prob(dataparameters)*prob(parameters) / prob(data)
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The posterior is a 
mixture of prior 

beliefs and sample 
information.

Prior

LikelihoodPosterior

Parameter

No prior information
(uniform prior) ⇒

posterior ≡ likelihood

No sample information
(uniform likelihood) ⇒

posterior ≡ prior

Posterior 
Density ∝ Sample 

Likelihood
Prior 

Density*
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The Effect of Prior Beliefs

Prior

Likelihood
Posterior

Parameter

Prior

Likelihood

Posterior

Parameter

If prior beliefs are expressed with a 
great deal of certainty, Bayesian 
estimates will be close to prior 
expectations and they will have 

small standard errors

Uncertain Beliefs Confident Beliefs
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Bayesian Estimation

External data in form 
of Prior density

Internal data 
as current 

Likelihood 
function Loss function

Posterior 
density for 

loss 
probability

Expected loss

Choose the 
parameter to 

minimize expected 
loss
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Bayesian Estimators

Standard loss functions:

Zero-One

Absolute

Quadratic

Optimal estimator:

Mode of posterior

Median of posterior

Mean of posterior

Maximum likelihood estimation (MLE) is a crude form 
of Bayesian estimation. It is particularly odd, when viewed 
from a Bayesian perspective, for estimating a probability
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Example: 
Using Bayesian Estimation with the IMA

Loss Given Event
• If both 'hard' internal data and 'soft' data are available on the 

distribution of losses, then Bayesian methods can be used to 
estimate µL and σL. 

• Suppose that in the 'hard' internal data the expected loss given
a loss event is 5m$ and the standard deviation of this loss is 
2m$; 

• Suppose that the 'soft' data, being obtained from an external 
consortium, shows an expected loss of 8m$ and a loss standard 
deviation of 3m$. 

• Assuming normality of loss amounts, the prior density that is 
based on external data is N(8, 9) and the sample likelihood that
is based on internal data is N(5, 4). 

40

Example: 
Using Bayesian Estimation with the IMA

• The posterior density for L will also be normal, with mean µL that 
is a weighted average of the prior expectation and the internal 
sample mean. 

• The weights will be the reciprocals of the variances of the 
respective distributions. 

• In fact the Bayesian estimate for the expected loss will be 
� µµL = = [(5/4) + (8/9)]/[(1/4) + (1/9)] = 5.92m$

• The Bayesian estimate of the loss variance will be
[4x9]/[(4 + 9)], 

• Thus the standard deviation of the posterior is σσL = = 1.66m$.
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Example: 
Using Bayesian Estimation with the IMA

Loss Frequency
• Consider using a target or projected value for N − could be quite 

different from its historical value. 
• Bayesian estimation of a probability are often based on beta 

densities of the form
f(p) ∝∝ pa( 1 −− p)b 0 < p < 1.

• Bayesian estimates for p can use beta prior densities that are 
based on external data, or subjective opinions from industry 
experts, or 'soft' internal data.

• Sample likelihood: beta density based on ‘hard’ data ⇒
posterior also a beta density

• Assume quadratic loss function ⇒ Bayesian estimate of p = 
mean of the posterior density = (a + 1)/(a + b + 2) with a and b
being the parameters of the posterior density. 
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Example: 
Using Bayesian Estimation with the IMA

• Example: internal data indicate that 2 out of 100 new deals 
have incurred a loss due to unauthorized or fraudulent activity.

sample likelihood  ∝∝ p2( 1 −− p)98

• In an external database  there were 10 unauthorized or 
fraudulent deals in the 1000 deals recorded

prior density ∝∝ p10( 1 −− p)990

• Thus
posterior ∝∝ p12( 1 −− p)1088

• With quadratic loss, Bayesian estimate of p = 13/1102 = 0.0118. 
• Note: great potential to massage operational risk capital charge 

calculations using targets for N and Bayesian estimates for p, µL
and σL. 
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General Models of Loss and 
Frequency Distributions

No. Loss Events Per Year

Binomial (or Poisson or Gamma)

Loss Given Event

Fat-tailed Density 
(e.g. EVT)

Loss Distribution

Simulation
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Low Frequency Risks

No. Loss Events Per Year

Poisson

XS Loss Given Event

GPD

XS Loss Distribution

U

Normal 
Costs?

U
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Example: POT Model

Peaks Over Threshold (POT) Model:
• Magnitude of excess loss over predefined threshold is modelled 

by a Generalized Pareto Distribution
• Frequency of excess loss over predefined threshold is modelled 

by a Poisson process

Figure 10.2b: Peaks over Threshold
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Daily P&L Excess over Threshold (u = -2)
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GPD

• The distribution function Gu of excess losses Y = max (X - U, 0) 
over a high and pre-defined threshold U has a simple relation to 
the distribution F(x) of X, the underlying loss. 

• For most choices of underlying distribution F(x) the distribution 
Gu (y) will belong to the class of generalized Pareto 
distributions (GPD):

1 - exp (-y / β)   if  ξ = 0

Gu (y) =

1 - (1 + ξy / β)-1/ξ if ξ ≠ 0 

O'Brien et al. (1999), Ceske and Hernandez (1999), Cruz (1999), Medova (2000),

Dempster et al. (2001)  and King (2001) have explored the use of EVT for the

measurement of low frequency high impact operational risks. 
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Effect of β and ξ

Generalized Pareto Density ( ξ = 0)
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The parameters parameters β and ξ determine the scale and shape of the GPD
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Case Study

Historical data on loss 
(over 1m$) due to 
external events.

Recorded over a 
period of 12 years

Total capitalization of 
banks reporting 

losses was 50bn$
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Empirical Loss Frequency
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Expected no. 
loss events per 
year = 2.4545

⇒ Model loss 
frequency with 
Poisson density 

with λ ≈ 2.45
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Excess Loss Distribution

Three events in 
excess of 200m$

Take these actual 
amounts into 

account for the 
calculation of 

Expected XS Loss

and

Stdev of XS Loss

Empirical XS Loss Density
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Results: IMA

• With gamma loss frequency, the IMA capital charge is:
k µµΛΛ √√ [(1 + ([(1 + (σσΛΛ//µµΛΛ))22) λ ] ) λ ] 

• Very approximately:
� µµΛ Λ = 50m$, σσΛ Λ = 100m$, λ λ = 2.45

• That is:
100 k √√2.45 ≈≈ 150 k m$

• Or, with k ≈ 4 [???], IMA capital charge ≈ 600m$
• This charge corresponds to a total capitalization of 50bn$
• Suppose your bank has a capitalization of 5bn$
• Then the IMA charge will be approximately 60m$
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Results: Simulation
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Results: Simulation
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Comparison of Results

• AMA capital charge ≈ 400m$
• This charge corresponds to a total capitalization of 50bn$
• Suppose your bank has a capitalization of 5bn$
• Then the IMA charge will be approximately 40m$
• Source of error …… k?
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Where do we go from here?

Subjective 
Assessments

(e.g. model structure &
parameters)

Back Testing 
(e.g. goodness of 
fit to historic data)

Scenario Analysis

Loss 

Distribution
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Aggregation
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3. Management of Operational Risks

• Bayesian belief networks have many applications to modelling 
high frequency low impact operational risks such as the human 
risks where our focus should be on improved risk management 
and control procedures, rather than capital charges.

The basic structure of a Bayesian network is a directed acyclic graph

Team

Contract

Nodes represent 
random variables  

Edges represent causal links

The basic structure of a Bayesian network is a directed acyclic graph

Team

Contract

Nodes represent 
random variables  

Edges represent causal links

Team

Contract

Nodes represent 
random variables  

Edges represent causal links
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Bayesian Belief Networks (BBNs)

Advantages:
• BBNs describe the factors that are thought to influence 

operational risk, thus providing explicit incentives for behavioural
modifications;

• They provide a framework for scenario analysis: to measure 
maximum operational loss, and to integrate operational risk with
market and credit risk;

• Augmenting a BBN with decision nodes and utilities improves 
transparency for management decisions. Thus decisions may 
be based on ‘what if?’ scenarios

Limitations:
• No unique structure; a BBN is a picture of the mind of the 

modeller
• Therefore BBNs require much clarity in their construction and 

rigorous back testing
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Node Probabilities 

TeamTeam
Prob(good) = 0.75

Prob(bad) = 0.25

Prob(good) = 0.5

Prob(bad) = 0.5

Prob(lose) = prob(lose | T=good and M=good) prob(T=good and M=good)

+  prob(lose | T=good and M=bad) prob(T=good and M=bad)

+  prob(lose | T=bad and M=good) prob(T=bad and M=good)

+  prob(lose | T=bad and M=bad) prob(T=bad and M=bad)

Prob(lose) = 0.3125

Prob(win) = 0.6875

MarketMarket

ContractContract
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Discrete and Continuous Nodes

62

Describing the Network

Nodes, edges, and 
probabilities are 

added to model the 
influence of causal 

factors for each 
node 

The Bayesian 
network is 

completed when all 
initial nodes can be 

assigned 
probabilities
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Example: Settlement Loss

Operational (as 
opposed to credit) 
settlement loss is 
“the interest lost 

and the fines 
imposed as a result 

of incorrect 
settlement”
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Initial Probabilities

Expected Loss = 239.3$

99% Tail Loss = 6,750$ 

(per transaction)
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Scenario Analysis:
Maximum Operational Loss

Expected Loss = 957.7$

99% Tail Loss = 8,400$ 

(per transaction)
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Example: Number of Fails
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Multivariate Distributon
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Marginal Distributions
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BBNs for Human Risks

Human risk has been defined as the risk of inadequate 
staffing for required activities 

• Measures of human adequacy:
Ø Balanced Scorecard (Kaplan & Norton)
Ø Key Performance Indicators

• ‘Causal’ factors or ‘Attributes’:
Ø Lack of training 
Ø Poor recruitment processes
Ø Loss of key employees
Ø Poor management 
Ø Working culture
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BSC Performance Indicators

• Financial
Ø % income paid in fines or interest penalties 

• Customer
Ø % customers satisfied with quality and timeliness 

• Internal processes 
Ø % employees satisfied with work environment, 

professionalism, culture, empowerment and values

• Learning and growth
Ø % employees meeting a qualification standard
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Key Performance Indicators

Function Quantity Quality

Back Office Number of transactions processed
per day

Proportion of internal errors in
transactions processing

Middle Office Timeliness of reports

Delay in systems implementation;
IT response time

Proportion of errors in reports

Systems downtime

Front Office Propriety traders: 'Information ratio'

Sales: Number of contacts

Proportion of ticketing errors;
Time stamp delays

Credit quality of contacts;
Customer complaints
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Example: 
Number of Transactions Processed
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Bayesian Decision Networks
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Summary and Conclusions

• Bayesian networks are useful in scenario analysis over the 
attributes of operational risks: 
– 'maximum operational loss' scenarios can be identified to help the 

operational risk manager focus on the important factors that 
influence operational risk.

– Scenario analysis over market and credit risk factors is useful for 
the integration of operational risk measures with market and credit 
risk measures

• Management of operational risks may be facilitated by the use 
of a Bayesian decision network, to increase transparency of 
senior management decisions: they allow the decision maker to 
base choices on 'what if?' scenarios.

Note: Amongst others,  Wilson (1999), Alexander (2000, 2001) and King (2001) 
have advocated the use of BBNs for modelling high frequency low impact 
operational risks.
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Useful Links: Performance Measures

Ø hrba.org (Human Resources Benchmarking Association) and 
fsbba.org (Financial Services and Banking Benchmarking 
Association)

Ø afit.af.mil and pr.doe.gov/bsc001.htm (Balance Scorecard 
meta-resource pages)

Ø bscol.com (Balance Scorecard Collaborative - Kaplan and 
Norton) and pr.doe.gov/pmmfinal.pdf (Guide to Balance 
Scorecard Methodology)

Ø mentorme.com/html/D-Keyperfind.html and totalmetrics.com/tr-
kpa.htm (Monitoring KPIs)

Ø kpisystems.com/case_studies/banking/bi_kpi_ops_values.htm
(some KPIs for banking operations)
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Useful Links: Bayesian Networks

Ø http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html (list of free Bayesian network 
software)

Ø dia.uned.es/~fjdiez/bayes (meta-resource page for Bayesian networks)
Ø research.microsoft.com/research/dtg/msbn/default.htm (MSBN a free non-

commercial Excel compatible BBN)
Ø hugin.dk (leading commercial BBN with free demo version Hugin Light)
Ø lumina.com (makers of Analytica, leading software package for quantitative 

business models) 

Ø dcs.qmw.ac.uk/research/radar (Risk Assessment and Decision Analysis 
Research, QMW College London and their consultancy agena.co.uk specializing 
in risk management of computer-based systems)

Ø genoauk.com (Operational risk consultancy firm)
Ø algorithmics.com (Watchdog Bayesian network product)
Ø eoy.co.uk (Ermst and Young Bayesian network product)
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Useful Links: Bayesian Networks

Ø http.cs.berkeley.edu/~murphyk/Bayes/bnsoft.html (list of free Bayesian network 
software)

Ø dia.uned.es/~fjdiez/bayes (meta-resource page for Bayesian networks)
Ø research.microsoft.com/research/dtg/msbn/default.htm (MSBN a free non-

commercial Excel compatible BBN)
Ø hugin.dk (leading commercial BBN with free demo version Hugin Light)
Ø lumina.com (makers of Analytica, leading software package for quantitative 

business models) 

Ø dcs.qmw.ac.uk/research/radar (Risk Assessment and Decision Analysis 
Research, QMW College London and their consultancy agena.co.uk specializing 
in risk management of computer-based systems)

Ø genoauk.com (Operational risk consultancy firm)
Ø algorithmics.com (Watchdog Bayesian network product)
Ø eoy.co.uk (Ermst and Young Bayesian network product)


