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Abstract

The revised Basel Capital Accord requires banks to meet a capital requirement for
operational risk as part of an overall risk-based capital framework. Three distinct options for
calculating operational risk charges are proposed (Basic Approach, Standardised Approach,
Advanced Measurement Approaches), reflecting increasing levels of risk sensitivity. Since
2001, the Risk Management Group of the Basel Committee has been performing specific
surveys of banks’ operational loss data, with the main purpose of obtaining information on
the industry’s operational risk experience, to be used for the refinement of the capital
framework and for the calibration of the regulatory coefficients. The second loss data
collection was launched in the summer of 2002: the 89 banks participating in the exercise
provided the Group with more than 47,000 observations, grouped by eight standardised
Business Lines and seven Event Types. A summary of the data collected, which focuses on
the description of the range of individual gross loss amounts and of the distribution of the
banks’ losses across the business lines/event types, was returned to the industry in March
2003. The objective of this paper is to move forward with respect to that document, by
illustrating the methodologies and the outcomes of the inferential analysis carried out on the
data collected through 2002. To this end, after pooling the individual banks’ losses according
to a Business Line criterion, the operational riskiness of each Business Line data set is
explored using empirical and statistical tools. The work aims, first of all, to compare the
sensitivity of conventional actuarial distributions and models stemming from the Extreme
Value Theory in representing the highest percentiles of the data sets: the exercise shows that
the extreme value model, in its Peaks Over Threshold representation, explains the behaviour
of the operational risk data in the tail area well. Then, measures of severity and frequency of
the large losses are gained and, by a proper combination of these estimates, a bottom-up
operational risk capital figure is computed for each Business Line. Finally, for each Business
Line and in the eight Business Lines as a whole, the contributions of the expected losses to
the capital figures are evaluated and the relationships between the capital charges and the
corresponding average level of Gross Incomes are determined and compared with the current
coefficients envisaged in the simplified approaches of the regulatory framework.
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1. Introduction and main results 1

Operational risk has become an area of growing concern in banking. The increase in

the sophistication and complexity of banking practices has raised both regulatory and

industry awareness of the need for an effective operational risk management and

measurement system. From the time of the release of the second consultative document on

the New Capital Accord in 2001, the Basel Committee on Banking Supervision has

established a specific treatment for operational risk: a basic component of the new

framework is represented by Pillar 1, which explicitly calls for a minimum capital charge for

this category of risk 2.

The proposed discipline establishes various schemes for calculating the operational

risk charge, ranging from a crude Basic Approach, based on a fixed percentage of Gross

Income - the indicator selected by the Committee as a proxy of banks’ operational risk

exposure - passing through an intermediate Standardised Approach, which extends the Basic

method by decomposing banks’ activities and, hence, the capital charge computation, into

eight underlying business lines3, to the most sophisticated approaches, the Advanced

Measurement Approaches (AMA), based on the adoption of banks’ internal models. The

framework gives banks a great deal of flexibility in the choice of the characteristics of their

internal models 4, provided they comply with a set of eligible qualitative and quantitative

criteria and can demonstrate that their internal measurement systems are able to produce

reasonable estimates of unexpected losses.

                                                          
1 For the people who have no time to explore the whole paper, the reading of the Sections 1, 2, 10, 11 and 12
may suffice in order to have a quick understanding of the main, significant, topics dealt with in this analysis.
The author would like to thank Giovanni Carosio, Stefano de Polis, Paolo Zaffaroni, Fabrizio Leandri,
Giuseppe De Martino and two anonymous referee for comments and fruitful discussions and Giorgio Donato
for his careful reading and corrections, which helped the author in improving the final form of this paper. A
special thanks to Michele Romanelli who implemented the algorithms used for the bootstrapping and
conventional analysis. E-mail: marco.moscadelli@bancaditalia.it
2 The new Accord is based on a three Pillar concept, where Pillar 1 corresponds to a Minimal Capital
requirement, Pillar 2 stands for a Supervisory Review process and Pillar 3 concerns Market discipline.
3 The eight business lines established by the Accord are: Corporate Finance, Trading & Sales, Retail
Banking, Commercial Banking, Payment & Settlement, Agency Services, Asset Management and Retail
Brokerage.
4 The new discipline establishes that the capital calculation must be based on a sound combination of
qualitative and quantitative elements: internal data, relevant external data, scenario analysis and bank-specific
business environment and internal control factors.
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Since the first release of the new Basel proposal, regulators, practitioners and

academics have been engaged in discussion on how to define and measure operational risk

and, hence, how to determine appropriate capital requirements.

As regards the definition aspects, the Risk Management Group (RMG) of the Basel

Committee  and industry representatives have agreed on a standardised definition of

operational risk, i.e. “the risk of loss resulting from inadequate or failed internal processes,

people and systems or from external events”. This definition, which includes legal risk and

excludes strategic and reputational risk, relies on the categorisation of operational risks

based on the underlying causes. A standardised classification matrix of operational risk into

eight Business Lines (BLs) and seven Event Types (ETs) has also been defined, in order to

encourage greater consistency of loss data collection within and between banks.

As regards the measurement issue, a growing number of articles, research papers and

books have addressed the topic from a theoretical point of view. In practice, this objective is

made hard by the relatively short period over which operational risk data have been gathered

by banks; obviously, the greatest difficulty is in collecting information on infrequent, but

large losses, which, on the other hand, contribute the most to the capital charge. The need to

evaluate the exposure to potentially severe tail events is one of the reasons why the new

Capital framework requires banks to supplement internal data with further sources (external

data, scenario analysis) in order to compute their operational risk capital charge.

Since 2001, the RMG has been performing surveys of banks’ operational loss data,

with the main purpose of obtaining information on the industry’s operational risk experience,

useful for improving the capital framework and calibrating the regulatory coefficients. In

particular, the second Loss Data Collection Exercise (2002 LDCE), serving to collect the

operational risk losses borne by banks in the financial year 2001, was an extension and

refinement of the previous exercises sponsored by the RMG 5. Overall, 89 banks participated

in the 2002 survey, providing the RMG with more than 47,000 observations, mapped in the

standardised matrix BLs/ETs. Feedback on the data collected, which focuses on the

description of the range of individual gross loss amounts and of the distribution of these
                                                          
5 A description of the information collected in the previous exercises can be found in the “Working Paper on
the Regulatory Treatment of Operational Risk” released in September 2001 and in the paper “The Quantitative
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losses across the BLs/ETs categories, was provided to industry in March 2003 (see the

document “The 2002 Loss Data Collection Exercise for Operational Risk: Summary of the

Data Collected”, published on the BIS website).

The objective of the present paper is to move forward with respect to that document,

by illustrating the methodologies and the outcomes of the inferential analysis carried out on

the operational risk losses collected through 2002. In order to statistically explore the data,

first a pooling exercise of the banks’ losses according to a BL criterion is performed, then

the operational riskiness of each BL data set is examined by means of empirical and

statistical tools. Several practical and theoretical reasons support this choice rather than

exploring any or some individual banks’ database. From a practical point of view, the

objective of measuring and comparing the operational riskiness of the BLs in addition to that

of providing protection to the confidentiality of the LDCE banks’ data. From a theoretical

point of view, the fact that the aggregation of banks’ operational risk data, collected in short

time windows (1-year, say), is a viable solution to actually overcome the threats of non-

repetitiveness and dependence of the observations, which typically affect any individual

banks’ historical database; furthermore, each BL data set, obtained by assembling 1-year

period data from n banks having similar size and characteristics (the 2002 LDCE banks), can

be thought as referred to a medium-sized (large internationally active) bank and collected

over a time window of n-year. In practice, by a cross-section pooling procedure, long time-

series of i.i.d. operational risk data are reproduced.

The first purpose of the work is to compare the sensitivity of conventional actuarial

distributions and models stemming from the Extreme Value Theory (EVT) in representing

the extreme percentiles of the data sets (i.e. the large losses). Then, measures of severity and

frequency of the large losses in each data set are gained and, by a proper combination of

these estimates, a bottom-up operational risk capital charge is computed. Finally, for each

BL and in the eight BLs as a whole, the contributions of the expected losses to the capital

figures are evaluated and the relationships between the capital charges and the corresponding

average level of Gross Incomes are determined and compared with the current regulatory

coefficients.

                                                                                                                                                                                  
Impact Study for Operational Risk: Overview of Individual Loss Data and Lessons Learned”, released in
January 2002. Both the papers are available on the BIS website (www.bis.org).
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It is evident that the reliability of the exercise is strictly connected with the (unknown)

actual quality of the overall data, which, as the 2002 LDCE summary stresses, have been

gathered by banks according to different levels of consistency.

The results indicate a low performance of conventional actuarial severity models in

describing the overall data characteristics, summarizable in very high levels of both

skewness to the right and kurtosis. Indeed, any traditional distribution applied to all the data

in each BL tends to fit central observations, hence not taking the large losses into adequate

consideration. On the other hand, the exercise shows that the Extreme Value model, in its

severity representation (Peaks Over Threshold-Generalised Pareto Distribution, POT-GPD),

provides an accurate estimate of the actual tail of the BLs at the 95th  and higher percentiles;

this is confirmed by the results of three goodness-of-fit tests and a severity VaR performance

analysis.

The POT-GPD model reveals that, while each BL severity riskiness increases

substantially at the highest percentiles because of the heaviness of the tail, the ranking of the

riskiness of the BLs does not change significantly. In particular Corporate Finance and

Commercial Banking are found to be the riskiest BLs with an estimated severity loss at the

99.9th  percentile of € 260 million and € 151 million, respectively. On the other hand, Retail

Banking and Retail Brokerage are the least risky BLs, showing severity loss at the 99.9th

percentile of € 17 million and € 27 million respectively.

In light of its supremacy in the estimate of the loss tail-severity distribution, the

Extreme Value model, in its Peaks Over Threshold - Point Process representation (POT-PP),

is also used to estimate the loss tail-frequency distribution, that is to derive the probability of

occurrence of the large losses in each BL.

The results show the significant per-bank variability of the number of large losses in

each BL. The reasons for this may be found in the different level of comprehensiveness in

the collection of (large) losses between the banks participating in the RMG survey and

perhaps also in the short time horizon of the 2002 LDCE (1-year data collection), which

might have caused, for some banks, a few gaps in the collection of very rare and large losses.

Another likely cause of the variability of the frequency of large losses could lie in the

participation, in the 2002 LDCE, of banks having different size and hence potentially in a
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position to produce, in some BLs, a lower or higher number of large losses in a given time

horizon. These issues are specifically addressed in this paper and their, potential, misleading

effects on the estimate of the BLs frequency of large losses mitigated. In particular the

possible incompleteness of very large losses is overcome by placing a floor on the, 1-year

period, probability of occurrence of the losses with a single-impact magnitude bigger than

the 99th percentile of the severity distribution: the floor is represented by the number of large

losses occurring at the 99th percentile of the frequency distribution. The potential differences

in banks’ size is treated by assuming the existence in the panel of two distinct groups of

banks – a “lower group”, consisting of banks having smaller size (in fact domestic banks),

and an “upper group”, consisting of banks having larger size (in fact internationally active

banks) – for which separate analyses are made on the basis of the estimated, distinct, 1-year

numbers of large losses. In particular, for a typical international active bank, the model

reveals about 60 losses bigger than € 1 million per year; this figure is absolutely comparable

with that actually borne by large internationally active banks.

On the basis of the POT tail severity and frequency estimates, an aggregate figure for

each BL and for the eight BLs as a whole is computed by means a semiparametric approach.

The POT approach appears to be a viable solution to reduce the estimate error and the

computational costs related to the not analytical techniques, like the MonteCarlo simulation,

usually implemented in the financial industry to reproduce the highest percentiles of the

aggregate loss distribution. The findings clearly indicate that operational losses represent a

significant source of risk for banks, given a 1-year period capital charge against expected

plus unexpected losses at the 99.9th percentile which amounts to € 1,325 million for a typical

international active bank and to € 296 million for a domestic bank. Owing to the higher

frequency of losses, Retail Banking and Commercial Banking are the BLs which absorb the

majority of the overall capital figure (about 20 per cent each), while Corporate Finance and

Trading & Sales are at an intermediate level (respectively close to 13 per cent and 17 per

cent) and the other BLs stay stably under 10 per cent. These figures are comparable with the

allocation ratios of economic capital for operational risk reported by banks in the 2002

LDCE (see Table 21 of the cited summary). Moreover, the results show the very small

contribution of the expected losses to the total capital charge: on average across the BLs,

they amount to less than 3 per cent of the overall capital figure for an international active
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bank, with a minimum value of 1.1 per cent in Corporate Finance and a maximum of 4.4 per

cent in Retail Banking. Once again, these outcomes confirm the very tail-driven nature of

operational risk.

Finally, for the banks belonging to the “upper group” (the international active banks),

the relationships between the BLs overall capital figures and the average level of the Gross

Incomes are computed and compared with the current regulatory coefficients envisaged in

the Basic and Standardised Approach of the Capital Accord (the so-called Alpha and Betas).

For the eight BLs as a whole, the results show a slightly lower ratio than the current

regulatory coefficient, hence giving an incentive to move from the Basic to the Standardised

Approach and meeting, at the same time, the objective of not increasing the industry overall

level of capital requirement for operational risk. Nevertheless, adjustment of the coefficient

of some BLs might more effectively capture the actual operational riskiness shown by the

data (in particular, a sizable reduction in the Trading & Sales and Retail Banking and an

increase in the Payment & Settlement and Retail Brokerage Betas).

This paper is organised as follows: Section 2 describes the main characteristics of the

raw data used in the work and the choices made in terms of data assumption and treatment;

in Section 3 each BLs data set is explored by an empirical analysis which focuses on a

bootstrapping procedure and a graphical representation of the density function of the BLs;

Section 4 illustrates the main results of the conventional inference on the severity of losses;

Section 5 describes the theoretical background of EVT, while Sections 6, 7 and 8 are

devoted to estimate, test and measure the tail-severity of the eight BLs by the POT-GPD

model. Section 9 is devoted to computing the probability of occurrence of the tail of the BLs,

by means of the frequency component of the POT approach (POT-PP). In Section 10 the

capital charge of the BLs against expected plus unexpected losses is computed and compared

with the contribution pertaining to expected losses alone. Section 11 focuses on the

relationship between the estimated capital figures of the BLs and the pertaining average level

of Gross Incomes. Section 12 concludes.
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2. Data characteristics and assumptions

The data used for the analysis are those collected in the 2002 LDCE by the RMG,

which required the 89 banks participating in the survey to provide individual gross

operational losses above the threshold of  €10,000 for the year 2001, grouped by quarters.

In order to statistically explore these data, all the individual banks’ data were pooled

according to a BL criterion, leading to eight distinct data sets, each one relative to a different

BL. Practical and theoretical reasons determined the decision to pool the individual banks’

data by BLs:

a) the need to protect the confidentiality of the individual banks’ losses;

b) the need to have, for each data set, a number of losses high enough to be modelled;

c) the objective of assessing and comparing the operational riskiness of the eight BLs.

In doing so, it may be that, due to the particular nature of operational risk, a few

inconsistencies in some loss data sets may have arisen (e.g. how should the riskiness

stemming from pooling very different ETs as Internal Fraud and Damage to Physical Assets

be interpreted ?). Anyway, it should be observed that data inconsistencies could also arise

from pooling losses according to an ET criterion (Internal Fraud in Trading & Sales, for

example, seems to appear completely different from Internal Fraud in Retail Banking) or

simply from handling data referred to a specific BL/ET combination, originating from banks

with very different operational risk profiles.

Moreover, it should be noted that, since operational risk spreads over the different

activities of a bank organisation, any loss analysis is potentially exposed to the threat of

inconsistencies of data, when they refer to sources that are not properly categorised: the

problem, which could condition the quality and the results of the inference, therefore lies

within banks and only later between banks. Sound practices require banks to conduct a

rigorous and detailed classification of their products, functions and processes and to adopt a

clear and widespread definition of operational risk in their organisational units before any

loss event identification and mapping is conducted and a statistical analysis of losses is made

(on the issues of operational risk definition and categorisation, see, for example, Samad-

Khan, 2003).
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Table 1 reports the results of the pooling exercise for each BL, in terms of the number

of banks providing at least one loss figure and the total number of observations.

Table  1:  BLs data pooling exercise

Overall, the number of observations after the pooling exercise is 45,569, a value

slightly lower than that of the 2002 LDCE, the difference being caused by the decision to

exclude data not having a business line breakdown (1,699 observations, see Table 3 of the

2002 LDCE summary) as well 1 observation in BL8, which proves to be an outlier. In BL4,

5 out of 3,414 observations tend to be outliers, too: even if kept in the sample, they are not

taken into consideration in the fitting exercise, and are considered only in the VaR

performance analysis made in Section 7.

Each data set, referred to a distinct BL, can be considered as a sample extracted from

the corresponding unknown population, whose properties, characteristics and riskiness are to

be detected and compared. It is assumed that, in each BL, the observations are the

realisations of independent, identically distributed (i.i.d.) random variables.

The issue of not dependence of the operational risk losses, like the non-stationarity,

and its possible effect on the modelling exercise has been more recently addresses by

industry and academia. In particular, Embrechts et al., 2003, identify the causes of time-

BUSINESS LINE n. banks providing
loss data

n. total
observations

BL 1  (Corporate Finance) 33 423
BL 2  (Trading & Sales) 67 5,132
BL 3  (Retail Banking) 80 28,882
BL 4  (Commercial Banking) 73 3,414
BL 5  (Payment & Settlement) 55 1,852
BL 6  (Agency Services) 40 1,490
BL 7  (Asset Management) 52 1,109
BL 8  (Retail Brokerage) 41 3,267
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structural changes of operational losses both in survival bias 6 and in changes in banks

external/internal environment (e.g. changes in the economic cycle, volume of business, or

organisational or internal control systems). As the authors state, the non-stationarity

condition can distort the results of the applied statistical models, which are mainly based on

the i.i.d. assumption: the authors therefore stress the importance of modelling the non-

stationarities of data before a statistical analysis can be made.

In the current exercise, the data independence assumption is mainly based on the idea

that any pooling exercise of banks’ operational risk losses collected in a reasonably short

time (say, 1 or 2 years), can in fact mitigate the threat of dependence of the data, which, on

the contrary, might be present in individual banks’ historical data-bases. This assumption

arises from the consideration that the operational risk losses usually occur independently in

each bank, as they are mainly caused by banks internal drivers (process, human resource and

internal system). Moreover, if the losses refer to moderately short time horizons (e.g. 1 or 2

years), the risks of non-stationarity of each bank’s database - caused, as noted before, by

possible survival bias or changes in the bank’s external/internal environment as time evolves

– should also be reduced 7.

The identically distributed data assumption is based on the consideration that banks

having characteristics not too dissimilar (as the banks participating in the 2002 LDCE) are

not distinguishable by the severity of losses, since they are indifferently exposed to losses of

any size 8.

                                                          
6 Survival or selection bias is defined as the fact that operational losses that occurred some distance in the
past have not survived in current bank databases. As the authors state, the early losses seem not only sparser,
but also larger. In practice, one only remembers the largest losses (on this topic, see also Embrechts et al.,
2004).
7 With regard to event types caused by bank external drives, some form of dependence between data
collected from different banks may arise (e.g. an earthquake can contemporaneously damage the physical assets
of several banks).  However, in this exercise, the data independent assumption for such events was tested and
verified on the eight BLs (see Section 3 below). On the data dependence, the interested readers can see the
examples discussed by Embrechts and Samorodnitsky, 2002,  or the analysis conducted by Ebnother et al.,
2001, aimed to assess the impact of specific risk factors (i.e. fraud, system failures, error, external catastrophes)
on several production processes.
8  In this exercise the issue of the potential non-homogeneity of the operational risk data is addressed only with
regard to the frequency component of losses (see Section 9 below, in particular footnote 36). The similarities in
the loss severity across the 2002 LDCE banks have been also detected by de Fontnouvelle et al. (2004), which
have recently examined the empirical regularities of operational risk in six large international active banks
participating in the survey launched by the Basel Committee.
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As a result of the pool exercise and the i.i.d. assumptions, two practical features

originate:

1. the overcome of the threat of the non-repetitiveness of the losses, which indeed

represents one of the biggest concerns in the statistical treatment of the operational risk

data (see Embrecths et al., 2003);

2. the fact that the collection of 1-year period data from n banks having similar sizes and

characteristics can reasonably represent the collection of n-year period data referred to a

bank having average size and characteristics. Under this perspective, the current analysis

assumes thus that the pool of 1-year period data from the 89 banks participating in the

2002 LDCE (cross-section analysis) is equivalent to the collection of  data from a

medium-sized LDCE bank during a time window of 89-years (time-series analysis). In

other words the whole data set can be thought of as referred to a large internationally

active bank and collected over time.

3. Exploratory data analysis

A preliminary exploratory analysis of the operational raw data is conducted in order to

gain information on the actual underlying structure of the severity of the eight BL data sets.

In particular, owing to the known nature of operational risk and to the ultimate goal of

assessing the  riskiness of the BLs, the analysis focuses on the evaluation of the levels of

asymmetry and tail-heaviness of the data sets (that is measures of skewness and kurtosis)

rather than on the location and scale.

In addition, instead of exploring the eight-pooled data sets, new data groups are

generated from the original ones on the basis of a  bootstrapping procedure. The aim is

twofold: to strengthen the informative power of the raw data on the unknown moments of

the population and, above all, to provide further protection to the confidentiality of the losses

                                                                                                                                                                                  
As a general rule, if substantial differences in terms of the behaviour of the losses were detected for some
banks, suitable statistical treatments (so-called “scaling methodologies”) would be required to make data
comparable and to ensure that merging all the individual databases leads to unbiased estimates (for a recent
scaling proposal, see Frachot and Roncalli, 2002, who address the problem of mixing banks internal and
external data).
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reported by the individual banks in the 2002 LDCE 9. In practice, a resampling technique

with replacement is applied to each original BL data set. The steps of the bootstrap are the

following:

a) generating a random number from integers 1, 2,…,n, where n is the BL sample size.
Let j be this number;

b) obtaining the j-th member of the original sample;

c) repeating the first 2 steps n times (because of replacement, the same value from the
original sample may be selected more than once);

d) computing the parameter estimates from these n new values;

e) repeating 1,000 times steps 1 through 4.

The large number of bootstrapping estimates can be considered as a random sample

from the sampling distribution of each parameter estimator being calculated: the mean of the

bootstrap samples is a good indicator of the expected value of the estimator.

In Table 2, the outcomes of the bootstrapping procedure are reported:

Table 2: BLs bootstrapping results

                                                          
9 As regard the first purpose, according to the bootstrap theory, this procedure provides a reliable indication
of the properties of the population parameters estimator (see Efron and Tibshirani, 1993). Concerning the
confidentiality issue, the replacement of the raw data estimates with the bootstrapped ones definitevely
removes the risk of an individual bank being identifiable due to its relative importance in the determination of
some moments of the BLs.

BUSINESS LINE Mean       
(euro ,000)

Standard deviation  
(euro ,000) Skewness Kurtosis

BL 1  (Corporate Finance) 646 6,095 16 294
BL 2  (Trading & Sales) 226 1,917 23 674
BL 3  (Retail Banking) 79 877 55 4,091
BL 4  (Commercial Banking) 356 2,642 15 288
BL 5  (Payment & Settlement) 137 1,320 24 650
BL 6  (Agency Services) 222 1,338 13 211
BL 7  (Asset Management) 195 1,473 25 713
BL 8  (Retail Brokerage) 125 1,185 32 1,232
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The estimates of the bootstrapped moments indicate that the empirical distributions of

the eight BLs are very skewed to the right and, above all, very heavy in the tail. In order to

better appreciate the peculiarities of these data, it should be remembered that the skewness

and the kurtosis of a standard LogNormal distribution are equal, respectively, to 6 and 114.

Therefore, despite the short time-window of the 2002 LDCE, the pooled data sets

appear to capture the large-impact events, a very important pre-condition for obtaining

consistent estimates of the capital figures. One reason may be the circumstance that the

reference year for the 2002 LDCE was 2001, the year of the September 11th  terroristic

attack. As the 2002 LDCE summary paper remarks “.. the distribution of gross loss amounts,

in particular, is likely to be sensitive to the incidence of relatively few very large-impact

events. This phenomenon is certainly evident in the 2001 data, which contain some large

individual loss amounts associated with events of September 11, for example” 10. In light of

that, it may be that, owing to the September 11th event, the pooled data sets violate the

assumption of independence of the observations. In reality, a deeper analysis conducted on

the pooled data clearly indicates that the very large losses are spread out across the BLs and

do not converge to one or just a few BLs 11. In any case, the assumption that, in each BL data

set, the observations are independent should be preserved or, at most, moderately weakened.

In order to have a preliminary idea on the graphical behaviour of the losses, a kernel

smoothing technique 12  was performed for each original (that is, before the bootstrapping)

BL data set. The kernel procedure makes it possible to obtain a nice graphical representation

of the BLs density function, by smoothing the histogram figure driven by the original data

(see Figure 1). In practice, a probability value is assigned to each observation based on the

mass of data close to it: the denser the data close to the observation whose probability is to

be evaluated, the higher the probability assigned.

                                                          
10 Table 6 of that paper shows that more than three-quarters of the total gross loss arise from only 2.5 per cent
of the events.
11 The reason could lie in the fact that the losses, even if caused by just a few common drivers (as, for istance,
the September 11th attack) may have affected distinct businesses of the banks (i.e., the September 11th event
may have affect the different activities conducted by the banks in the Twin Towers building).   
12 The Epanechnikov kernel was used.
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Figure 1: kernel density function for some BLs

The kernel density functions clearly show the skewness of the data, but not the

kurtosis.

4. Conventional inference: Business Lines tail-severity estimate

It should be first observed that the cut-off limits (€ 10,000) established in the 2002

LDCE to report losses are not taken into account in modelling the severity of the data. The

reason mainly lies in the fact that some banks used different minimum cut-off levels in

providing the RMG with their data; therefore each BL pooled data set also contains losses

below the threshold of  € 10,000. Moreover, as it will become clearer in the remainder of this

paper, given the actual nature of the operational risk losses, any statistical model which

correctly represents the body of the data (that is the small/medium-sized losses) may have

serious drawbacks in fitting the tail area. In the light of the objective of the analysis, i.e. to
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gain information on the tail magnitude of the eight BLs, the choice between a ground-up, a

truncated or a shifted distribution to estimate the severity of the data becomes immaterial 13.

The aim of this section is to apply, separately for each BL, conventional inference to

the original pooled data, bearing in mind the ultimate goal of detecting the curve that best

explains the behaviour of the severity of losses in the tail area. This is done by fitting

parametric distributions to the eight overall data sets and obtaining a parameters estimate

that optimises the criterion of maximum likelihood.

Several distributions are fitted to the data, according to an increasing level of kurtosis,

i.e. starting from light-tail distributions (as Weibull), passing through medium-tail curves (as

Gamma, Exponential, Gumbel and LogNormal) to heavy-tail models (as Pareto).

The Kolmogorov-Smirnov (K-S) and Anderson-Darling (A-D) tests are adopted to

reject or to accept the null hypothesis that the data originate from the selected distribution

with the estimated parameters. In light of the objectives of the exercise, the A-D test seems

to be more suitable because it is much more sensitive to the tails of data.14

The results indicate that Gumbel and LogNormal are the distributions that best fit the

data in each BL. Both lighter-tail (as Gamma) and heavier-tail (as Pareto) functions result in

much higher test values.

In Figure 2, referred to BL1 (Corporate Finance), the plots of the Gumbel and

LogNormal cumulative distribution functions can be compared with the empirical

distribution functions, the latter being defined, for a sample of size n, as

�
=

≤=
n

i
xXin n

xF
1

}{11)( , i.e. the number of observations less than or equal to x divided by n.

The LogNormal curve seems to provide a reasonable fit to the whole data set, while the

Gumbel curve fits poorly in the body of the data but better in the tail.

                                                          
13 Frachot and Roncalli, 2002, and Baud et al., 2002, discuss these and other related issues in the context of
pooling internal and external databases which are truncated from below.
14 The attractive feature of the K-S test is that it is “distribution free”, in the sense that the critical values do
not depend on the specific distribution being tested. Despite that, it has the disadvantage of being more
sensitive near the center of the distribution than at the tails. On the other hand, the A-D test makes use of any
specific distribution in calculating critical values. The A-D advantage of allowing a more sensitive test would
thus seem to be counterbalanced by the burden of calculating, different, critical values for each distribution to
be investigated. In reality, the differences between the A-D test values are not so important: for example, the
tabulated A-D test values for LogNormal, Gumbel and Weibull differ only at the third decimal.
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Figure 2: BL1 (Corporate Finance).  LogNormal and Gumbel fit

In fact, from this picture it is difficult to investigate if the selected distributions provide

a good fit in the region we are most interested in, that is the tail area. When the graphical

analysis is limited to the tail, i.e. the last 10 per cent of the distribution, it can immediately

be seen that both distributions fit the data very poorly: LogNormal underestimates the

empirical, actual, tail from the 90th  percentile, Gumbel from the 96th  percentile (see Figure

3).

      Figure 3: BL1 (Corporate Finance).  LogNormal and Gumbel fit (focus on the tail)
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If the analysis is performed on an another BL (BL3: Retail Banking), it is easy to see,

by graphical analysis, the poor fit of both the distributions in the tail area: LogNormal

underestimates the tail from the 90th  percentile, Gumbel from the 96th  (see Fig. 4).

Figure 4: BL 3 (Retail Banking). LogNormal and Gumbel fit (focus on the tail)

This phenomenon does not change if the other BLs are considered (Figure 5 shows the

tail fit for BL6, BL7 and BL8).

Figure 5: BL6, BL7 and BL8. LogNormal and Gumbel fit (focus on the tail)
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The goodness-of-fit test values for the LogNormal and Gumbel distributions, reported

in Table 3, confirm the graphical perception: in all the BLs, the test values are much higher

than the critical ones, at both the 90 per cent and 99 per cent significance levels (the BLs test

values are highlighted in yellow if higher than the critical ones. In Table 3 only the critical

values for α = 90 per cent are reported). The biggest differences can be observed for the A-D

values, owing to the greater weight this test gives to the distance between the estimated and

the empirical distribution function in the tail area.

 Table 3: Conventional inference results

The main lesson learnt from modelling the severity of operational risk losses by

conventional inference methods is that, even though some selected distributions fit the body

of the data well, these distributions would underestimate the severity of the data in the tail

area: the extent of this error will be investigated in Section 8, where a severity VaR

performance analysis is employed.

In practice, the considerable skewness to the right of the empirical distribution causes

each curve parameters estimate to be mainly influenced by the observations located in the

left and middle area of the empirical distribution, hence reducing the informative power of

the data located in the tail area and providing lower than actual figures for the extreme

BUSINESS LINE n. obs. µ σ Kolmogorov-
Smirnov

Anderson- 
Darling µ σ Kolmogorov-

Smirnov
Anderson- 

Darling 
Kolmogorov-

Smirnov 
Anderson- 

Darling 

BL 1  (Corporate Finance) 423 3.58 1.71 0.18 22.52 93.96 602.30 0.43 124.62 0.06 0.63

BL 2  (Trading & Sales) 5,132 3.64 1.27 0.14 180.52 51.76 185.25 0.37 1,224.03 0.02 0.63

BL 3  (Retail Banking) 28,882 3.17 0.97 0.18 1,653.03 25.63 58.80 0.34 6,037.35 0.01 0.63

BL 4  (Commercial Banking) 3,414 3.61 1.41 0.16 173.94 48.30 203.53 0.37 830.57 0.02 0.63

BL 5  (Payment & Settlement) 1,852 3.37 1.10 0.15 73.74 35.86 109.93 0.36 436.48 0.03 0.63

BL 6  (Agency Services) 1,490 3.74 1.28 0.12 46.33 54.82 181.19 0.35 332.74 0.03 0.63

BL 7  (Asset Management) 1,109 3.79 1.28 0.11 25.68 56.78 153.72 0.32 203.94 0.04 0.63

BL 8  (Retail Brokerage) 3,267 3.58 1.08 0.12 87.67 41.03 93.51 0.31 576.51 0.02 0.63

Critical values             
(α = 90°)Parameters 

estimate Fitting tests results

LogNormal Distribution Gumbel Distribution
Parameters 

estimate Fitting tests results
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quantiles. In such a situation, using all the observations to measure the size of the tail could

be therefore misleading.

5. Extreme Value Theory: theoretical background

As seen in the conventional inference, the influence of the small/medium-sized losses

in the curve parameters estimate does not permit models that fit the tail data accurately to be

obtained. An obvious solution to this problem is not to take into consideration the body of

the distribution, focusing the analysis only on the large losses. In practice large and

small/medium-sized losses are treated separately. If one is interested in obtaining

information on some average values of the distribution, conventional or empirical analysis

on the data located in the small/medium-sized region may be used (in the current exercise,

for example, the outcomes of the conventional inference will be used to derive the expected

losses of the BLs, see Section 10 below).

Concerning the tail area, quite a number of different distributions could be adopted; for

example, LogNormal and Pareto curves are commonly accepted in insurance to model large

claims. However, in this analysis, extreme distributions, stemming from the Extreme Value

Theory (EVT), are utilised. The reason lies in the fact that EVT has solid foundations in the

mathematical theory of the behaviour of extremes and, moreover, many applications have

indicated that EVT appears to be a satisfactory scientific approach in treating rare, large

losses. It has been widely applied in structural engineering, oceanography, hydrology,

reliability, total quality control, pollution studies, meteorology, material strength, highway

traffic and, more recently, in the financial and insurance fields15. For a comprehensive source

on the application of EVT to finance and insurance, see Embrechts et al., 1997, and Reiss

and Thomas, 2001.

In general, operational risk losses undoubtedly present characteristics analogous to

data originating from the above-mentioned fields (immediate analogies, for example, can be

                                                          
15 In recent years, there have been a number of extreme value studies and applications in finance and
insurance: for example McNeil studies the estimation of the tails of loss severity distributions (1997), examines
the quantile risk measures for financial time series (1998) and provides an extensive overview of the extreme
value theory for risk managers (1999); Embrechts studies the potentials and limitations of the extreme value
theory (1999 and 2000); McNeil and Frey study the estimation of tail-related risk measures for heteroschedastic
financial time series (2000).
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found in insurance, reinsurance, reliability  and total quality control). In fact, operational risk

data appear to be characterised by two “souls”: the first one, driven by high-frequency low-

impact events, constitutes the body of the distribution and refers to expected losses; the

second one, driven by low-frequency high-impact events, constitutes the tail of the

distribution and refers to unexpected losses. In practice, the body and the tail of data do not

necessarily belong to the same, underlying, distribution or even to distributions belonging to

the same family. More often their behaviour is so different that it is hard to identify a unique

traditional model that can at the same time describe, in an accurate way, the two “souls” of

data: the conventional inference on the BLs  whole data sets in Section 4 furnishes a clear

proof  of  that 16.

Consequently, in all the cases in which the tail tends “to speaks for itself”, EVT

appears to be an useful inferential instrument with which to investigate the large losses,

owing to its double property of focusing the analysis only on the tail area (hence reducing

the disturbance effect of the small/medium-sized data) and treating the large losses by an

approach as scientific as the one driven by the Central Limit Theorem for the analysis of the

high-frequency low-impact losses 17. Clearly, EVT is not a “panacea”, since specific

conditions are required for its application and even  then it is still open to some criticisms,

extensively investigated in the literature (on this topic, see for example Embrechts et al.,

1997, Diebold et al., 1998, and Embrechts et al., 2003).

Unlike traditional methods, EVT does not require particular assumptions on the nature

of the original underlying distribution of all the observations, which is generally unknown.

EVT is applied to real data in two related ways.

The first approach (see Reiss and Thomas, 2001, p. 14 ff) deals with the maximum (or

minimum) values the variable takes in successive periods, for example months or years.

                                                          
16 Some mixture distributions could be investigated in order to identify a model that provides a reasonable fit
to both the body and the tail of data. However, the disadvantage of such distributions is that they are more
complex and, hence, less easy to handle. Furthermore a mixture model would be an arbitrary choice, not
supported by a robust theory and, because of that, one would have less confidence in extrapolating the
outcomes beyond the empirical data.
17 To cite, respectively, Diebold et al., 1998, and Smith, 1987, “EVT helps the analyst to draw smooth curves
through the extreme tails of empirical survival functions in a way that is guided by powerful theory and hence
provides a rigorous complement to alternatives such as graphical analysis or empirical survival functions” and
“There is always going to be an element of doubt, as one is extrapolating into areas one doesn’t know about.
But what EVT is doing is making the best use of whatever data you have about extreme phenomenon”.
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These observations constitute the extreme events, also called block (or per-period) maxima.

At the heart of this approach is the “three-types theorem” (Fisher and Tippet, 1928), which

states that there are only three types of distributions which can arise as limiting distributions

of extreme values in random samples: the Weibull type, the Gumbel type and the Frechet

type. This result is very important, since the asymptotic distribution of the maxima always

belongs to one of these three distributions, regardless of the original one. Therefore the

majority of the distributions used in finance and actuarial sciences can be divided into these

three classes, according to their tail-heaviness:

•  light-tail distributions with finite moments and tails, converging to the Weibull curve

(Beta, Weibull);

•  medium-tail distributions for which all moments are finite and whose cumulative

distribution functions decline exponentially in the tails, like the Gumbel curve (Normal,

Gamma, LogNormal);

•  heavy-tail distributions, whose cumulative distribution functions decline with a power in

the tails, like the Frechet curve (T-Student, Pareto, LogGamma, Cauchy).

The Weibull, Gumbel and Frechet distributions can be represented in a single three

parameter model, known as the Generalised Extreme Value distribution (GEV):

GEVξ,µ,σ(x)  =       
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where: 1+ξ x >0

The parameters µ and σ correspond to location and scale; the third parameter, ξ, called

the shape index, indicates the thickness of the tail of the distribution. The larger the shape

index, the thicker the tail.
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The second approach to EVT (see Reiss and Thomas, 2001, p. 23 ff) is the Peaks Over

Threshold (POT) method, tailored for the analysis of data bigger than preset high thresholds.

The severity component of the POT method is based on a distribution (Generalised

Pareto Distribution - GPD), whose cumulative function is usually expressed as the following

two parameter distribution:

GPDξ,,σ(x)  =       
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where:  x ≥ 0  if  ξ ≥ 0,   0 ≤ x ≤ -σ /ξ   if   ξ < 0

    and ξ and σ  represent respectively the shape and the scale
parameter

It is possible to extend the family of the GPD distributions by adding a location

parameter µ. In this case the GPD is defined as:

GPDξ,µ,,σ(x)  =       
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The interpretation of ξ in the GPD is the same as in the GEV, since all the relevant

information on the tail of the original (unknown) overall distribution is embedded in this

parameter18: when ξ < 0 the GPD is known as the Pareto “Type II” distribution, when ξ = 0

the GPD corresponds to the Exponential distribution. The case when ξ > 0 is probably the

most important for operational risk data, because the GPD takes the form of the ordinary



30

Pareto distribution with tail index α = 1/ξ and indicates the presence of heavy-tail data 19; in

this particular case there is a direct relationship between ξ and the finiteness of the moments

of the distribution:

( ) ξ1≥∞= kifxE k (4)

For instance, if ξ ≥ 0.5 the GPD has an infinite variance, if ξ ≥ 1 there is no finite

moment, not even the mean. This property has a direct consequence for data analysis: in fact

the (heavier or lighter) behaviour of data in the tail can be easily directly detected from the

estimate of the shape parameter.

Now, let  Fx(x) be the (unknown) distribution function of a random variable X (with

right-end point xF) which describes the behaviour of the operational risk data in a certain BL

and let Fu(y) be its excess distribution at the threshold u. The excess distribution can be

introduced as a conditional distribution function, that is:
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u (5)

It represents the probability that a loss exceeds the threshold u by at most an amount y,

given that it exceeds the threshold.

The theory (Balkema-De Haan, 1974, and Pickands, 1975) maintains that for a large

class of underlying distributions, the excess distribution Fu(y) converges asymptotically to a

GPD as the threshold is progressively raised to the right endpoint xF of the distribution 20 :

0|)()(|suplim , =−
→

yGPDyFuxu F
βξ (6)

                                                                                                                                                                                  
18 The maxima of samples of events from GPD are GEV distributed with shape parameter equal to the shape
parameter of the parent GPD. There is a simple relationship between the standard GDP and GEV such that
GPD(x) = 1+log GEV(x) if log GEV(x) > -1
19 The ordinary Pareto is the distribution with distribution function F(x) = 1 - (a/x)α and support x > a. This
distribution can be rewritten as F(x) = 1 - (1 + (x - a)/a) α   so that it can be seen to be a GPD with shape ξ = 1
/α, scale σ = a/α  and location µ = a. In practice it is a GPD where the scale parameter is constrained to be the
shape multiplied by the location, hence it is a little less flexible than a GPD, where the scale can be freely
chosen.
20 The conditions under which excess losses converge to GPD distributions are very large. For an extensive
treatment, see Embrechts et al., 1997.
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where GPDξ,β (y)  =       

0exp1

011
1

=
�
�
�

�
�
�
−−

≠��
�

	



�

�
+−

−

ξ
β

ξ
β

ξ
ξ

ify

ify

(7)

with:  y= x-u = excess, ξ = shape, β = scale;

 and support  y ∈  [0, xF - u] if ξ ≥ 0

y ∈  [0, -β/ξ] if ξ < 0

In this work, the GPDξ,β (y) will be called the “excess GPD”, to stress the fact that the

argument y  represents the excesses, that is to say the exceedances x (i.e. the data larger than

the threshold u) minus the threshold u itself.

Equivalently, the limit condition (6) holds if the exceedances x are used in place of the

excesses y: changing the argument, the Fu(y) and GPDξ,β (y) transform respectively to Fu(x)

and GPDξ,,u,β (x), with the threshold u, now, representing the location parameter and x > u.

Therefore, when the threshold tends to the right endpoint xF, the exceedance distribution

Fu(x) converges asymptotically to a GPD with the same shape ξ, scale β and location µ = u.

The GPDξ,u,β (x) will be called the “exceedance GPD” because it deals with the exceedances

x at u.

One of the most important properties of the GPD is its stability under an increase of

the threshold.

To show that, let isolate Fx(x) from (5):

( )[ ] ( ) ( )uFyFuFxF xuxx +−= 1)(

Looking at the limit condition (6), both the excess distribution Fu(y) and the

exceedance distribution Fu(x) can be approximated well by suitable GPDs. By using the

“exceedance GPD”, one obtains:
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( )[ ] ( ) ( )uFxGPDuFxF xuxx +−≈ βξ ,,1)( (8)

Substituting the GPDξ,u,β expression in (8):
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The only element now required to identify Fx(x) completely is Fx(u), that is to say the

value of the (unknown) distribution function in correspondence with the threshold u. To this

end, the empirical estimator of Fx(x) introduced in section 4, computed at u, can be a viable

solution:
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where: n is the total number of observations

   nu the number of observations above the threshold u

The threshold u should be set at a level that let enough observations exceeding u to

obtain a reliable empirical estimate of  Fx(u).

Consequently, Fx(x) can be completely expressed by the parameters of the GPDξ,u,σ(x)

and the number of observations (total and over the threshold):
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This quantity is defined as the “tail estimator” of Fx(x), as it is valid only for x > u. It is

possible to demonstrate that the “tail estimator” is also GPD distributed: it is the

semiparametric representation of the GPDξ,µ,σ  referred to all the original data, with the same
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shape ξ and location and scale equal to µ and σ  respectively. The GPDξ,µ,σ  will be called

the “full GPD” because it is fitted to all the data in the tail area21.

Semiparametric estimates for the “full GPD” parameters can be derived from those of

the “exceedance GPD”:
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As there is a one-to-one relationship between the “full GPD” (GPDξ,µ,σ) and the

“exceedance GPD” (GPDξ,u,β), it is also possible to express the scale parameter of the latter

by the former: β = σ +ξ(u-µ). It should be noted that, while the scale (β) of the “exceedance

GPD” depends on where the threshold is located, the shape (ξ), the location (µ) and scale (σ)

of the “full GPD” are independent of the threshold. Hence a nice practical method to check

the robustness of the model for some specific data is to evaluate the degree of stability of

these latter parameters over a variety of thresholds 22.

By applying the GPD stability property, it is possible to move easily from the excess

data (y = x-u) to the tail of the original data (x > u) and from the excess distribution Fu(y) to

the underlying (unknown) distribution Fx(x).

An immediate consequence of the GPD stability is that if the exceedances of a

threshold u follow a GPDξ,u,β, the exceedances over a higher threshold v > u are

GPDξ,v,β + ξ (v-u), that is they are also GPD distributed with the same shape ξ, the location

equal to v (the new threshold) and the scale equal to  β + ξ (v-u) . This property will be

extensively adopted in the current exercise.

                                                          
21 Examining (10) it can be immediately seen that, in contrast with the “excess GPD” (and the “exceedance
GPD”), the “full GPD” in its semiparametric representation provides information on the frequency with which
the threshold u is pierced by the exceedances: the empirical quantity Fn(u), built on the number of observations
(total and above the threshold) takes care of this aspect. Nevertheless, if one wants to move on from the
semiparametric “full GPD” to its completely parametric form, all the information on the original data must be
available (that is, it is necessary to know the amounts of the data under the threshold, in addition to their
number).
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6.  Peaks Over Threshold approach: Business Lines tail-severity estimate

In light of the EVT features described in the previous Section, the POT method is

implemented in each BL data set, by fitting the “excess GPD”, GPDξ,β (y), to the excess

losses of a selected threshold.

As seen before, the GPD fitting work depends on three elements:

a) the threshold (u), to be set by the analyst;

b) the excess data, i.e. the original data minus the selected threshold and

c) two parameters (ξ and β) to be estimated from the excess data.

A key modeling aspect with the GPD is the selection of the threshold, that is the point

where the tail starts. The choice of u should be large enough to satisfy the limit law

condition (theoretical condition: u should tend to the right-end point xF), while at the same

time leaving sufficient observations for the estimation (practical condition). Furthermore,

any inference conclusion on the shape parameter – which, as noted, governs the heaviness of

the tail – should be insensitive to increases in the threshold above this suitable level.

A number of diagnostic instruments have been proposed in the literature for threshold

selection, including a bootstrap method that produces an optimal value under certain criteria

(see Danielsson et al., 2000). Owing to its handiness and simplicity, one of the most used

techniques is the mean excess plot (see Davison and Smith, 1990), a graphical tool based on

the Sample Mean Excess Function (SMEF), defined as:
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22 In practice, for each threshold u, the estimate of the “exceedance GPD” parameters (ξ and β) must be
obtained and hence the corresponding values of the “full GPD” parameters (µ and σ) gained. Then the
approximate equality of ξ, µ and σ for increasing thresholds must be investigated.
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i.e. the  sum of the excesses over the threshold u divided by the number of data points that

exceed the threshold itself. The SMEF is an estimate of the Mean Excess Function (MEF),

defined as:

( ) ( )uXuXEuMEF >−= | (13)

which describes the expected overshoot of a threshold once an exceedance occurs.

It can be demonstrated (see Embrechts et al., 1997) that if the plot shows a downward

trend (negative slope), this is a sign of short-tailed data. Exponentially distributed data would

give an approximately horizontal line while data from a heavy-tail distribution would show

an upward trend (positive slope). In particular, if the plot is a positively sloped straight line

above a certain threshold u, it is an indication that the data follow a GPD with a positive

shape parameter ξ in the tail area above u. This  is clear, since for the GPD the MEF is

linear:

ξ
ξβ

−
+=

1
)( uuGPDMEF (14)

where (β + ξ u) > 0

In applying the mean excess plot to the eight BLs, the goal is to detect a straightening

out or, at least, a change in the slope of the plot above a certain threshold, in order to be able

to fix that threshold as the start of the tail and to fit the GPD to the excess data. For each data

set, the SMEF against increasing thresholds from the initial value is plotted; since the plot

can be hard to interpret for very large thresholds (because there are few  exceedances and,

hence, high variability in the sample mean), it was decided to end the plot at the fourth order

statistic (see Figure 6) 23.

                                                          
23 One issue of the mean excess plot is that the MEF does not exist for GPD with ξ > 1.  In that case, a
trimmed version of the MEF could be used, since the last function always exists, regardless of the shape values
(on this topic see Reiss and Thomas, 2001, p. 56).
In the current exercise, a comparison between the SMEF and its trimmed version (applying a data truncation
percentage of 5 per cent from below and from above) was made. As the differences in the resulting plots were
negligibles, the whole, untrimmed, version of the SMEF was adopted for the selection of the threshold.
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Figure 6: mean excess plot for the BLs
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In all the data sets, clear evidence of straightening out of the plot is found from the

starting level. However, owing to the need to satisfy the theoretical condition (u should be

large enough), the threshold is set close to the 90th empirical percentile for all the BLs except

for Retail Banking, where it is shifted to the 96.5th percentile because of the greater number

of observations.

In Table 4 the threshold selection results are reported for all the BLs.

Table 4: BLs threshold selection

The set thresholds leave a large enough number of exceedances to apply statistical

inference in all the BLs 24, except for BL1.

                                                          
24 This affirmation is supported by the results of a simulation study conducted by McNeil and Saladin, 1997,
aimed to detect the minimal number of data and exceedances to work with in order to obtain reliable estimates
of high quantiles of given distributions. In particular, the exercise showed that, when the data presented a
Pareto heavy tail with shape parameter α =1/ξ = 1, a minimum number of 1,000 (2,000) data and 100 (200)
exceedances was required to have a reliable GPD estimate of the 99th (99.9th) percentile. As it can be seen in
Table 4, apart from BL1, the number of excesses appears to be large enough to obtain reliable estimates of the
99.9th percentile for the majority of the BLs.

BUSINESS LINE n. obs. threshold related empirical 
percentile 

n. 
excesses

BL 1  (Corporate Finance) 423 400.28 89.85% 42

BL 2  (Trading & Sales) 5,132 193.00 89.85% 512

BL 3  (Retail Banking) 28,882 247.00 96.50% 1,000

BL 4  (Commercial Banking) 3,414 270.00 90.66% 315

BL 5  (Payment & Settlement) 1,852 110.00 89.85% 187

BL 6  (Agency Services) 1,490 201.66 89.20% 158

BL 7  (Asset Management) 1,109 235.00 90.00% 107

BL 8  (Retail Brokerage) 3,267 149.51 89.99% 326
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For each BL, the maximum likelihood method is adopted to estimate the shape and

scale parameters of the GPD. For ξ > -0.5, Hosking and Wallis, 1987, present evidence that

maximum likelihood regularity conditions are fulfilled (consistency and asymptotic

efficiency) and the maximum likelihood estimates are asymptotically normally distributed 25.

As regards the BL1, a Bayesian correction of the (prior) maximum likelihood estimates is

conducted to obtain more consistent values for the parameters of the GPD 26.

To reinforce the judgements on the shapes estimate, a shape plot, based on the

comparison of the ξ estimates across a variety of thresholds, is used (see Embrecths et al.,

1997, p. 339). In practice, different GPD models are fitted to the excesses, with thresholds

increasing from the starting limit (see Table 4) to the values located approximately at the

99.9th empirical percentile. The degree of stability of ξ is then evaluated in the, right to

medium-left, range of the estimates interval: if the ξ values do not vary somewhat, the

inference is not too sensitive to the choice of the threshold in that range and a final estimate

of the shape parameter can be obtained as an average value of the ξ estimates 27.

Figure 7 shows, for some BLs (BL3, BL5, BL7 and BL8) the number of exceedances

identified for the corresponding thresholds (horizontal axis) and the estimates of the shape

parameter (vertical axis).

                                                          
25 The main competitors of the maximum likelihood estimator in the GPD model are the methods of moments
(simple matching and probability weighted) and, limited to ξ, the Hill estimator. However, the moments
methods assume the existence of the second moment, hence they perform poorly when the second moment
does not exist (that is when ξ > 0.5), while the Hill estimator may be inaccurate if the shape parameter ξ
estimate is large.
26 If there are few data (less than 40, say) the estimation errors become very large and resort has to be made to
credibility or Bayesian methods. For the application of Bayesian methods, see for example Smith and
Goodman,1996, Medova, 2000, and Reiss and Thomas, 2001.
27 To evaluate the finite sample properties of the maximum likelihood estimator (i.e. sensitivity to threshold
and sample size) McNeil and Frey, 2000, and Nystrom and Skoglund, 2002, conducted MonteCarlo
experiments for various distributions and sample sizes. The results were encouraging in all the cases, because
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 Figure 7: Shape plot for some BLs

                                                                                                                                                                                  
the estimator hardly varied with the choice of threshold within reasonable limits of the number of excesses (5-
13 per cent of the whole data set).
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In each BL plot, a satisfactory stability of ξ can be found in the range from the starting

threshold (right-side of the plot) to high thresholds (medium-left side of the plot) 28. In light

of that, each BL shape finale figure is set as the median of the ξ values in that range, pending

confirmation of the estimate in a while by suitable tests. The final value for the scale

parameter β is the maximum likelihood estimate calculated at the starting threshold.

Table 5 reports, for each BL, the GPD shape and scale estimates, together with the

values of the K-S and A-D tests. For the shape parameters, confidence intervals at the

significance level of α = 95 per cent are also computed using a bootstrap procedure.

Table 5: GPD fitting results

It can be observed that:

•  the K-S test values are lower than the critical ones in all the BLs, while the A-D test

values show a slight rejection of the null hypothesis for BL3 and BL6 (at the significance

level of α=90 per cent) and BL4 (even at the higher significance level of α=99 per cent).

Even if, in general, the hypothesis BLs tail originates from a GPD seems reasonable, the

                                                          
28 In the above plots, the stability is evident, for BL3, from a number of exceedances equal to 1,000 (in
corrispondence with the starting threshold) to about 100; for BL5, from 187 to about 70; for BL7, from 107 to
about 40; for BL8, from 326 to about 100.

Fitting tests results

Anderson- Darling 

BUSINESS LINE n. 
excesses

β ξ lower limit upper limit test results critical values 
(α = 90°) test results critical values 

(α = 90°)
critical values 

(α = 99°)

BL 1  (Corporate Finance) 42 774 1.19 1.06 1.58 0.099 0.189 0.486 0.630 1.030

BL 2  (Trading & Sales) 512 254 1.17 0.98 1.35 0.027 0.054 0.508 0.630 1.030

BL 3  (Retail Banking) 1,000 233 1.01 0.88 1.14 0.020 0.023 0.675 0.630 1.030

BL 4  (Commercial Banking) 315 412 1.39 1.20 1.62 0.058 0.070 1.541 0.630 1.030

BL 5  (Payment & Settlement) 187 107 1.23 0.96 1.37 0.028 0.090 0.247 0.630 1.030

BL 6  (Agency Services) 158 243 1.22 1.03 1.42 0.064 0.097 0.892 0.630 1.030

BL 7  (Asset Management) 107 314 0.85 0.57 1.18 0.060 0.118 0.217 0.630 1.030

BL 8  (Retail Brokerage) 326 124 0.98 0.76 1.20 0.033 0.068 0.291 0.630 1.030

Kolmogorov-Smirnov Parameters 
estimate

ξ confidence interval 
(α=95°)
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accuracy of the model needs to be confirmed by the outcomes of testing procedures, which

are more appropriate for large losses. This exercise will be conducted in the next section;

•  the shape parameters estimate (ξ) confirms the previous bootstrapping results (see Section

3) as regards the high kurtosis of the loss data for the BLs. Owing to the ξ estimates, the

GPD models have infinite variance in all the BLs (the ξ values are always greater than 0.5)

and, furthermore, have infinite mean in six BLs (ξ > 1 in BL1, BL2, BL3, BL4, BL5, BL6)

and almost infinite mean in BL8 (ξ = 0.98);

•  although there is some uncertainty in each shape estimate, reflected in the extent of its

confidence interval, the range of the ξ values provides evidence of the different riskiness of

the BLs. This impression will be confirmed in Section 8 by directly exploring and measuring

the tail of the BLs.

Figure 8 below shows, for each BL, the GPD curve together with the empirical

distribution function; the graphical analysis is limited to the last 50 per cent of the data or to

the tails. Unlike the conventional inference, closeness of the GPD and the empirical

distribution is now found even at the highest percentiles.

  

 Figure 8: All the BLs. Generalised Pareto Distribution fit
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BL3 (Retail Banking): GPD fit
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BL4 (Commercial Banking): GPD fit
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BL5 (Payment & Settlement): GPD fit
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BL 7 (Asset Management): GPD fit

0,5

0,6

0,7

0,8

0,9

1

0 10.000 20.000 30.000 40.000 50.000
excess loss (euro .000)

G
PD

 (r
ed

) -
 E

m
pi

ric
al

 (b
lu

)

BL8 (Retail Brokerage): GPD fit
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7.  Advanced tests on the severity results

As seen in the previous Section, the K-S and A-D tests provide some evidence of the

closeness of the GPD to the data. However, these tests are usually employed in actuarial

applications to measure the goodness of distributions fitted to a data set as a whole, not being

tailored for distributions of excesses over some thresholds. A specific, more tailored, test for

the GPD assumption is the W-statistics proposed by Davison, 1984. The test is based on the

residuals, defined as:
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where u is the threshold and σ and µ are the parameters of the “full GPD”.

If the excesses (xi-u) are i.i.d. from a GPDξ,µ,σ, the residuals Wi should be i.i.d.

Exponentially distributed with mean γ =1. As a result, two types of plots can be used to show

whether these assumptions are in fact supported by the data:

•  a scatter plot of residuals against their (time) order of occurrences. Systematic variation of

the residuals with time would indicate the presence of a trend in the model. Consequently,

the assumption of data stationarity may not be correct, given that the losses become smaller

or larger on average as time evolves;

•  a Q-Q plot of residuals against the expected order statistics under the Exponential

distribution. If the plot stays close to a straight line, the Exponential assumption for the

residuals and hence the GPD assumption for the excesses, may be tenable.

In light of the pooling exercise performed in this exercise, only the latter assumption

(the GPD behaviour of the excesses) may be tested. Nevertheless, as stated in Section 3, the

short temporal window on which the losses were collected provides a significant guarantee

for the absence of a trend in the data gathered in each individual bank’s database.
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After obtaining the residuals Wi 
29, the Q-Q plots are plotted (in Figure 9, the plots for

the BLs not, graphically, addressed in the previous shape plots analysis are shown). The Q-Q

plots appear to be quite close to a straight line of unit slope, hence, indicating an acceptable

fit of the GPD to the excesses.

Figure 9: Q-Q plot of residuals Wi  for some BLs

                                                          
29 In order to obtain the residuals Wi, the “full GPD” parameters µ and σ are needed. To this end,
semiparametric estimates are derived by substituting in (11) the estimates of the “exceedance GPD” parameters
(ξ and β), in addition to the threshold value and the number of observations (total and over the threshold).
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In order to check in a more accurately way the GPD assumption for all the BLs, the

Exponential hypothesis for residuals Wi is analytically tested within the Generalised Pareto

model (H0 : ξ = 0 30 against H1: ξ ≠ 0) by a suitable Likelihood Ratio test.

The statistic is TLR (see Reiss and Thomas, 2001, p. 154), defined as:
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LR WGPDWGPDT )(log2 ,,0,, σµσµξ (16)

Since the parameter sets have dimension 3 and 2, the TLR-test is asymptotically

distributed as a χ2 with 1 degree of freedom under the null hypothesis. Consequently, the p-

value is:

( )LRLR Tp 2
11 χ−=

For each BL, the TLR statistic is applied to the Wi residuals and the corresponding p-

value derived (see Table 6).

Table 6: Test of residuals Wi  for the GPD model: mean estimate (γγγγ) and p-value

The results confirm the hypothesis that the GPD is an appropriate model to represent,

even at high confidence levels, the tail of all the BLs.

                                                          
30 For ξ  close to 0, the GPD tends to an Exponential distribution (see Section 5).

BUSINESS LINE γ  estimate p-value of TLR

BL 1  (Corporate Finance) 1.001 0.81
BL 2  (Trading & Sales) 1.001 0.18
BL 3  (Retail Banking) 0.999 0.52
BL 4  (Commercial Banking) 1.070 0.29
BL 5  (Payment & Settlement) 1.002 0.74
BL 6  (Agency Services) 0.960 0.77
BL 7  (Asset Management) 0.900 0.52
BL 8  (Retail Brokerage) 1.003 0.92
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In the last part of this Section, a severity Value at Risk (VaRSev) performance analysis

is carried out for each BL in order to compare the different levels of accuracy of the GPD

and the conventional Gumbel and LogNormal distributions in representing the highest

percentiles of data.

The relative VaRSev performance of each model (see the next section for the GPDVaR

calculation) is backtested by comparing the estimated and the expected number of violations:

a violation occurs when the actual loss exceeds the VaRSev value. A number of violations

higher than the expected one indicates that the model consistently underestimates the risk at

the tail 31.

In practice, the expected number of violations in each BL is obtained by comparing the

total number of observations with the desired percentile. For instance, if a BL contains 1,000

data overall, the expected number of violations at the 99th percentile is equal to 0.01 * 1,000

= 10. Therefore, if the parametric model were correct, one would expect only 10

observations to be greater than the 99th percentile singled out by the model. If the violations

are more than 10, the 99th  parametric percentile lies at a lower level and hence

underestimates the actual tail of data.

In Table 7, the theoretical number of violations, calculated at the 95th , 97.5th, 99th ,

99.5th , 99.9th percentiles are compared with the estimated one, drawn from, respectively, the

GPD, LogNormal and Gumbel distributions.

                                                          
31  This test is equivalent to that  usually adopted in market risk to evaluate the VaR sensitivity of  the model.
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Table 7: VaRSev performance analysis

It can immediately be seen that, while the number of violations for the GPD model are

very close to the theoretical ones – this occurs both at the highest (99th, 99.5th and 99.9th) and

lowest (95th and 97.5th) percentiles – the LogNormal and Gumbel numbers of violations are

N. V IO LATIO NS
Percentile Theoretical G PD LogNorm al G um bel

0.950 21.15 21 36 16
0.975 10.58 12 22 15
0.990 4.23 3 16 13

n. obs = 0.995 2.12 2 13 12
423 0.999 0.42 0 5 10

0.950 256.60 259 351 211
0.975 128.30 129 261 184
0.990 51.32 56 185 160

n. obs = 0.995 25.66 26 144 137
5,132 0.999 5.13 2 89 113

0.950 1,444.10 1,386 2,062 1,234
0.975 722.05 722 1,551 1,023
0.990 288.82 294 1,094 812

n. obs = 0.995 144.41 139 837 719
28,882 0.999 28.88 31 514 560

0.950 170.70 173 241 168
0.975 85.35 102 175 155
0.990 34.14 48 137 137

n. obs = 0.995 17.07 20 106 130
3,414 0.999 3.41 5 71 106

0.950 92.60 95 115 60
0.975 46.30 44 89 49
0.990 18.52 20 58 43

n. obs = 0.995 9.26 10 46 42
1,852 0.999 1.85 2 33 34

0.950 74.50 73 98 66
0.975 37.25 41 73 58
0.990 14.90 16 51 50

n. obs = 0.995 7.45 7 41 46
1,490 0.999 1.49 0 30 39

0.950 55.45 55 72 55
0.975 27.73 32 53 48
0.990 11.09 9 38 40

n. obs = 0.995 5.55 6 27 38
1,109 0.999 1.11 1 10 30

0.950 163.35 166 220 134
0.975 81.68 88 149 117
0.990 32.67 30 105 99

n. obs = 0.995 16.34 16 73 87
3,267 0.999 3.27 6 37 58

BL 5     
(Paym ent &  
Settlem ent)

BL 6       
(Agency 

Services)

BL 7         
(Asset 

M anagem ent)

BL 8          
(Retail 

B rokerage)

BL 1  
(Corporate 
Finance)

BL 2      
(Trading &  

Sales)

BL 3         
(Retail    

Banking)

BL 4  
(Com m ercia l 

Banking) 
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always larger than the expected ones. This outcome once again confirms the excess of

optimism of the conventional inference in representing the operational riskiness of the BLs.

8. Business Lines tail-severity measures and magnitude

The results from the graphical inspection, the goodness-of-fit tests and the VaRSev

performance analysis clearly indicate that the GPD appears to be a consistent and accurate

model to with which represent the extreme quantiles of each BL's operational risk data set.

In light of that, in this section the GPD will be used to get information on the size of the tail

of the eight BLs, that is on their operational severity riskiness.

The first risk measure that is computed is the VaR introduced in the previous Section

for backtesting purposes (GPDVaR). In standard statistical language, the VaR at confidence

level p is the smallest loss that is greater than the pth  percentile of the underlying loss

distribution:

( ){ }pXFxXVaR xp ≥= :inf)( (17)

As the GPD only deals with the severity component of the losses and does not address

the matter of the frequency of their occurrence, the GPDVaR identifies merely the time-

unconditional loss percentile. In this exercise, the conditional losses referred to a 1-year time

horizon (and hence the conditional 1-year loss percentiles) will be computed after

completely implementing the POT approach in order to take into account its frequency

component (see Sections 9 and 10).

In the GPD model, it is possible to obtain a formula for the VaR by the semiparametric

representation of the “full GPD”.

In fact, for a given confidence level p > Fx(u), the VaR expression can be obtained by

inverting the tail estimator (10) to get:
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For each BL, Table 8 reports the GPDVaR  at different confidence levels (95th, 99th  and

99.9th), computed on the basis of the estimates of ξ  and β gained in the previous Section.

Table 8: BLs GPDVaR  (Euro ,000)

By looking at Table 8,  one can get the desired information on the size of the tail of the

BLs, on the basis of the figure revealed by the GPDVaR at the various percentiles.

However it should be observed that one of the most serious problems in using the VaR

in practical applications is that, when losses do not have a like-Normal behaviour, the VaR is

unstable and difficult to work with and, further, it fails to be a coherent measure of risk (in

the sense introduced by Arztner et al. in a well-known article in 1999)32. Moreover, the VaR

provides no handle on the extent of the losses that might be suffered beyond the amount

indicated by the VaR measure itself. It merely gives a lowest bound for the losses in the tail

and, in doing so, has a bias toward optimism instead of conservatism in the measure of the

riskiness of the businesses.

                                                          
32 The concept of “coherent” measures of risk was introduced in a famous article by Artzner et al, 1999, in
which the authors identified the specific properties a measure of risk had to respect in order to be classified as
coherent. Except for elliptical distributions, VaR was proved not to satisfy the property of subadditivity and
hence not to take into consideration the principle of risk diversification. Despite that, VaR was proved to
satisfy the other axioms: monotonicity, positive homogeneity and translation invariance.

BUSINESS LINE p = 95° p = 99° p = 99.9°

BL 1  (Corporate Finance) 1,222 9,743 154,523
BL 2  (Trading & Sales) 463 3,178 47,341
BL 3  (Retail Banking) 176 826 8,356
BL 4  (Commercial Banking) 668 6,479 159,671
BL 5  (Payment & Settlement) 230 1,518 25,412
BL 6  (Agency Services) 501 3,553 58,930
BL 7  (Asset Management) 511 2,402 17,825
BL 8  (Retail Brokerage) 272 1,229 11,539
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In light of that and given the actual characteristics of the 2002 LDCE operational risk

losses –a high level of kurtosis and a distributional behaviour very far from the Normal one -

different measures of risk are called for in order to have a consistent and reliable view of the

actual riskiness of the eight BLs. Quantities which estimate the shortfall risk appear to be the

proper tool, since they provide information on the magnitude of the whole tail and,

moreover, they were proved to be coherent measures of risk (see the abovementioned article

by Artzner et al.).

The most popular of these measures is the Expected Shortfall (ES), which estimates

the potential size of the loss exceeding a selected level L of the distribution (the level L may

be associated, for example, to a preset threshold u or to the VaRp itself). The expression for

the ES is:

( ) ( ) ( )LMEFLLXLXELLES +=>−+= | (19)

where the second term in the formula is simply the Mean Excess Function (13),

introduced in Section 6.

In the GPD model with threshold u and parameters ξ and β, the expression for the ES

is the following 33:
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which is defined only for values of the shape ξ < 1.

In light of the BLs shape estimate obtained in the current exercise (greater than 1 or

very close to 1, see Table 5), it is evident that the GPDES cannot be consistently used.

Accordingly, alternative measures of shortfall risk are called for.

                                                          
33 Given the POT stability propriety, the conditional distribution over the level L, FL(y) = P(X-L≤y|X>L), is
also GPD with the same ξ, location = L and scale = β + ξ (L-u). The expected value of FL(y) is the MEF(L) and
assumes the form [β + ξ(L-u)]/(1-ξ). Substituing in (19), it is possible to calculate the expression for the
GPDES(L), in both the cases of     L = u and L =VaRp.
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A solution lies in a quantity which resorts to the Median Excess Function [MEDEF

(u)], that is to the median of excesses over a threshold u: MEDEF (u) = [Fu(1/2)] -1.

In particular, the MEDEF(u) for the GPD model can be derived, firstly, by inverting

the expression (7) − that is the “excess GPD” at u, GPDξ,β(y) − for a generic probability p, to

get:

[ ] ( )[ ]11)( 1
, −−= −− ξ
βξ ξ

β ppGPD

and then imposing  p = 1/2
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Making use of the GPDMEDEF(u), an appropriate measure of shortfall risk, strictly

connected to the GPDES(u), can be easily derived. The expression is:

( ) [ ]12)( −+=+= ξ

ξ
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which may be identified as the (GPD) Median Shortfall at level u.

The nice feature of the GPDMS(u) is that, unlike the GPDES, it is defined regardless of

the values of the shape (see Reiss and Thomas, 2001, p. 56), while preserving, similarly to

the GPDES, the property of the POT stability (see Rootzen and Tajvidi, 1997). In particular,

given the quantity GPDMS(u) computed at the threshold u, the GPDMS(v) at the higher level

v > u can be expressed as:

( ) [ ]12)( −−++= ξ

ξ
ξβ uvvvGPDMS (22)

In light of its features, the GPDMS represents the suitable and reliable risk measure

used in this exercise to compute the  tail-severity riskiness of the eight BLs.

In Table 9, for each BL, the GPDMS values computed at the starting threshold u − as

previously noted, close to the 90th empirical percentile for all the BLs except for BL3 (96.5th)

− and at the higher thresholds v (set close to significant empirical percentiles in the range

90th - 99.9th) are reported.
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Table 9: BLs tail-severity magnitude (Euro ,000)

(*) As the starting threshold for Retail Banking is close to the 96.5th percentile, the GPDMS is constant under this level.

(**) As the GPDMS expression (22) makes use of the thresholds v and u as non-parametric components, it is not directly
comparable with the GPDVaR (18), whose non-parametric components are represented, other than the threshold u itself,
by the number (n) of total observations and the number (nu) of exceedances with respect to the threshold u. It follows
that at some percentiles, the GPDMS figure may be lower than the GPDVaR (in the current exercise, this is the case for
Commercial Banking and Agency Services at the percentile of 99.9th).

Table 9 clearly indicates that:

•  owing to the tail heaviness of the data, each BL's severity riskiness increases remarkably

at the highest percentiles. On average over the eight BLs, the ratio between the 99.9th and the

99th  percentiles is about 10, with a peak of about 20 in BL5 (Payment & Settlement) and

BL7 (Asset Management);

•  the ranking of the riskiness of the BLs does not change significantly as the threshold is

progressively raised up to the 99.9th percentile. In particular Corporate Finance and

Commercial Banking are found to be the riskiest BLs with an estimated 99.9th percentile of

severity loss of € 260 million and € 151 million, respectively. On the other hand, Retail

Banking and Retail Brokerage prove to be the least risky BLs, showing a 99.9th severity loss

of € 17 million and € 27 million, respectively.

BUSINESS LINE 90° 91° 92° 93° 94° 95° 96° 97° 98° 99° 99.5° 99.9°

BL 1  (Corporate Finance) 1,234 1,383 1,740 1,861 2,245 3,383 4,256 7,311 11,927 19,030 111,577 260,415

BL 2  (Trading & Sales) 464 535 599 705 878 1,121 1,436 2,180 3,493 7,998 17,824 70,612

BL 3  (Retail Banking) (*) 481 481 481 481 481 481 481 550 831 1,694 3,232 17,411

BL 4  (Commercial Banking) (**) 750 764 896 1,070 1,322 1,694 2,776 4,490 8,453 20,063 39,246 151,553

BL 5  (Payment & Settlement) 227 262 302 342 415 551 697 914 1,714 3,910 9,950 80,518

BL 6  (Agency Services) (**) 466 579 661 779 950 1,208 1,669 2,619 5,324 10,107 22,636 51,805

BL 7  (Asset Management) 531 580 656 716 887 1,076 1,431 1,972 2,457 4,264 13,630 79,423

BL 8  (Retail Brokerage) 273 295 329 376 427 520 643 909 1,200 2,222 4,954 27,628

TOTAL 4,428 4,879 5,664 6,331 7,604 10,034 13,390 20,946 35,400 69,287 223,050 739,364
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9.  Peaks Over Threshold approach: Business Lines tail-frequency estimate

The exercises carried out in the previous Sections focused on the estimate and the

measurement of the (tail) severity component of the distribution of losses. As noted, the

severity figure provides information only on the potential size of the losses that a (large

internationally active) bank can bear, regardless of the holding period in which the losses

occur. In practice such as unconditional figure does not take into consideration the frequency

of the losses incurred in a given time horizon and therefore it is not yet adequate to represent

the BLs capital charge.

In fact, supposing that the operational risk capital charge should be determined for 1-

year holding period at the 99th percentile, if the final estimate were based only on the

unconditional GPDMS(99th) amount, this figure would underestimate or overestimate the

actual risk, depending on whether the probability of a 1-year occurrence of the losses with a

single-impact magnitude bigger than the 99th percentile of the severity distribution is

respectively higher or lower than 1 per cent.

The purpose of this Section is thus to supplement the GPD analysis carried out in the

previous Sections, by estimating and measuring the frequency of the large losses for each

BL.

To achieve this, the POT approach, so far limited to its severity component (POT-

GPD), is now totally implemented by means of the Point Process representation of the

exceedances (POT-PP).

The basic assumption of this method - developed as a probabilistic technique by

Leadbetter et al., 1983, and Resnick, 1987, and as a statistical tool by Smith, 1989 - is to

view the number of exceedances and the excesses as a marked point process with a proper

intensity, that, in its basic representation, converges to a two-dimensional Poisson process.

In practice:
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a) the exceedances (x) over a threshold u occur at the times of a Poisson process with

intensity λ;

b) the corresponding excesses (y=x-u) are independent and have a GPD distribution;

c) the number of exceedances and the excesses are independent of each other.

The parameter λ measures the intensity of the exceedances at u per unit of time, that is

if the number of large losses is stable over time or if it becomes more or less frequent.

In the basic case of stationarity of the process 34, the number of exceedances occurs as

a homogeneous Poisson process with a constant intensity, which can be written as:
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where ξ, µ and σ, as usual, represent the shape, the location and the scale parameters of

the “full GPD” and λu is supplied with the subscript to stress the dependence on the

threshold u (it is assumed in fact that this expression is valid only for x  ≥ u).

Since λu should be measured in the same time units as used for the collection of the

data, an estimate of the time-adjusted number of exceedances in a certain period T can be

simply obtained by λu T. For instance, if the per-bank number of exceedances in a 1-year

period is to be determined and the data collection refers indistinctly to working days and

holidays, the annualised intensity of exceedance will be:

uyearN λ3651 =−    (24)

                                                          
34 It should be noted, however, that the Point Process is robust against the non stationarity of data. In fact if
evidence of time-dependence of large losses is detected, some, or all, the parameters can be a function of time
and, in that case, the model would be a non-homogeneus Poisson process (for example, if the intensity rate was
not constant over time, a smoothing of λ=λ(t) over t may be appropriate). Furthermore, specific techniques
exist to handle other kinds of dependence of data, such as clustering of excesses. The only assumption that has
to be preserved to guarantee the robustness of the model is that the distribution of excesses is approximated by
a GPD. For examples of the application of the POT method in presence of trends of exceedances, see the case
studies of “tropospheric ozone” and “wind-storm claims”, carried out respectively by Smith and Shively, 1995,
and Rootzen and Tajvidi, 1997. For a smoothing technique to incorporate trends in the model, see Chavez-
Demoulin and Embrechts, 2003. For declustering methods, see Smith, 1989, Rootzen et al., 1992, and Ferro
and Segers, 2003.
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Equation (24) is tailored to the operational risk data, since the time of occurrence of a

single operational loss (either small or large) does not appear to be dependent on the working

days 35.

One of the nicest properties of the POT-PP, similarly to the POT-GPD, is its stability

under an increase of the threshold: if a Point Process at the threshold u converges to a

Poisson process with intensity λu, the Point Process at level v > u also converges to a Poisson

process. The new intensity is:
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where β is the scale parameter of the “exceedance GPD” GPDξ,u,β (see Rootzen and

Tajvidi, 1997). The same relationship holds if the intensity for unit of time λu is substituted

by a certain time-adjusted intensity, which, as noted, identifies the mean number of

exceedances in a given holding period (see Reiss and Thomas, 2001, p. 286):
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where NT,. represents the per-bank mean number of exceedances (at v or at u) in a

period of length T.

By expression (25) or (26), it is thus possible to analytically derive frequency figures

for large losses in correspondence with higher thresholds than the initial level.

In order to employ the POT-PP approach in the current exercise, an estimate of NT,u in

each BL at the starting threshold u is needed; subsequently the (26) may be used to get the

mean number of exceedances NT,v at higher thresholds v. The holding period is, obviously,

the time window employed in the 2002 LDCE, i.e. 1-year.

In general, an empirical estimate of the average annualised number of exceedances

(N1-year,u) occurred in a bank can simply be obtained from the total number of exceedances

occurred over the years of the data collection divided by the number of years itself.
                                                          
35 Operational loss events such as business disruption, fraud, external events, etc. may occur either on working
days or on holidays. On the contrary, the annualised intensity for financial losses tends to be connected to the
actual trading days, i.e. N1-year = 250 λu.
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Therefore, if the observations pooled in each BL data set were referred to only one bank, N1-

year,u would have been merely the count of exceedances over the threshold identified in the

GPD analysis (see the last column of Table 4).

However, it is to remind that each BL data set is the result of pooling the observations

of a, distinct, number n of banks (see Table 1) and, as stated in Section 2, it can reasonably

be assumed equivalent to the collection of i.i.d. losses from a medium-sized LDCE bank

during a time window of n-years. In light of that, a consequent, easy, way to identify an

empirical average annualised intensity Nu
i  pertaining to the i-th BL (omitting the 1-year

notation for simplicity) is the ratio between the total number of exceedances that occurred in

that BL and the number of banks providing data to the i-th BL itself (column 5 of Table 4

divided by column 2 of Table 1).

Nevertheless, a per-bank analysis of the actual number of exceedances at the GPD

starting threshold occurring in each BL reveals that this number is rather widespread over

the panel of banks: on average across the BLs, it results equal to 0 in 30 per cent of the cases

(to say, no exceedances occur) and assumes values much larger than the mean in other, not

negligible, cases. The reasons for this may lie in the different levels of comprehensiveness in

the collection of (large) losses among the banks participating in the RMG survey and,

perhaps, also in the short time horizon of the 2002 LDCE (1-year data collection), which

might have caused, for some banks, a few gaps in the collection of very rare and large losses,

especially if driven by banks’ external sources (see footnote 8). Another likely cause of the

variability of the frequency of large losses across the panel may lie in the actual presence of

banks having different size and hence potentially in a position to produce, in some BLs, a

lower or higher number of large losses in a given time horizon 36.

These frequency issues are specifically addressed and mitigated in this Section in order

to reduce the threat of obtaining biased estimates of the BLs frequency of large losses and

hence of the capital figures.

                                                          
36 Although it is realistic to assume that banks having similar characteristics are not distinguishable by the
severity of the losses (see Section 2, in particular footnote 8), the repetitiveness of losses, both small and large,
appears to be actually linked to the volume of business carried out, that is to the size of the bank. A “frequence
scaling methodology” is therefore called for.
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In particular, to explicitly take into account the potential differences in banks’ size –

which, as noted, may affect the frequency of large losses – it is assumed the existence in the

2002 LDCE of two distinct groups of banks: a “lower group”, consisting of banks with

smaller size (in fact domestic banks), and an “upper group”, consisting of banks with larger

size (in fact internationally active banks). For both a typical domestic bank and a typical

international active bank, suitable estimates of the annualised intensity of exceedances are

gained.

In order to get such estimates, in each BL the number of per-bank exceedances is fitted

by a Poisson and Binomial Negative model. Owing to the high skewness to the right, the

Binomial Negative distributions result the best-fitting ones in all the datasets: accordingly, in

each BL, the “mean” and the “mean plus two standard deviations” of that distribution are

assumed to be respectively the average annualised intensity of exceedances for a typical

domestic bank (Nlow) and the average annualised intensity of exceedances for a typical

international active bank (Nhigh).

Table 10 shows, for each BL, the number of banks providing data and the number of

banks with at least one exceedance over the relevant GPD threshold, as well the parameters

estimate of the Binomial Negative distribution (r and p). On the basis of such estimates, the

mean number of exceedances at u for typical domestic and international active banks are

computed (the last two columns of the Table).

Table 10: BLs average annualised frequency of large losses at the initial threshold

BUSINESS LINE n. banks providing 
data

n. banks with at least 
one exceedance r p Nlow Nhigh

BL 1  (Corporate Finance) 33 15 0.45 0.25 1.30 5.83
BL 2  (Trading & Sales) 67 48 0.37 0.05 7.78 33.92
BL 3  (Retail Banking) 80 66 0.26 0.02 12.36 61.75
BL 4  (Commercial Banking) 73 54 0.47 0.10 4.36 17.68
BL 5  (Payment & Settlement) 55 36 0.51 0.13 3.42 13.66
BL 6  (Agency Services) 40 23 0.30 0.07 3.97 19.10
BL 7  (Asset Management) 52 29 0.52 0.20 2.08 8.53
BL 8  (Retail Brokerage) 41 26 0.24 0.03 7.98 41.16

Binomial Negative 
parameters estimate

Annualised intensity
at threshold u
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After computing the average annualised frequency of large losses at the threshold u,

the figure for the mean number of exceedances at higher thresholds (set in correspondence

with the same significant empirical percentiles as those of the GPDMS; see Table 9) may be

derived from (26). In Table 11, the BLs tail-frequency magnitudes for typical international

active and domestic banks are reported.

Table 11: BLs tail-frequency magnitude

Typical international active bank : Nhigh

Typical domestic bank: Nlow

(*) As the starting threshold for Retail Banking is close to the 96.5th  percentile, N is constant below this level.

BUSINESS LINE 90° 91° 92° 93° 94° 95° 96° 97° 98° 99° 99.5° 99.9°

BL 1  (Corporate Finance) 5.83 5.38 4.55 4.33 3.77 2.75 2.29 1.48 0.99 0.68 0.15 0.08

BL 2  (Trading & Sales) 33.92 30.24 27.53 24.08 20.08 16.37 13.30 9.36 6.28 3.10 1.57 0.48

BL 3  (Retail Banking) (*) 61.75 61.75 61.75 61.75 61.75 61.75 61.75 53.88 35.45 17.37 9.14 1.73

BL 4  (Commercial Banking) 17.68 17.47 15.63 13.80 11.89 9.98 7.02 4.98 3.17 1.70 1.05 0.40

BL 5  (Payment & Settlement) 13.66 12.00 10.59 9.49 8.04 6.31 5.17 4.12 2.45 1.24 0.58 0.11

BL 6  (Agency Services) 19.10 15.98 14.34 12.52 10.64 8.73 6.70 4.63 2.59 1.53 0.79 0.40

BL 7  (Asset Management) 8.53 7.85 6.97 6.40 5.16 4.22 3.12 2.20 1.72 0.92 0.24 0.03

BL 8  (Retail Brokerage) 41.16 37.69 33.48 28.90 25.17 20.39 16.27 11.30 8.46 4.47 1.96 0.34

TOTAL 202 188 175 161 146 130 116 92 61 31 15 4

BUSINESS LINE 90° 91° 92° 93° 94° 95° 96° 97° 98° 99° 99.5° 99.9°

BL 1  (Corporate Finance) 1.30 1.20 1.02 0.97 0.84 0.61 0.51 0.33 0.22 0.15 0.03 0.02

BL 2  (Trading & Sales) 7.78 6.94 6.31 5.52 4.61 3.75 3.05 2.15 1.44 0.71 0.36 0.11

BL 3  (Retail Banking) (*) 12.36 12.36 12.36 12.36 12.36 12.36 12.36 10.79 7.10 3.48 1.83 0.35

BL 4  (Commercial Banking) 4.36 4.30 3.85 3.40 2.93 2.46 1.73 1.23 0.78 0.42 0.26 0.10

BL 5  (Payment & Settlement) 3.42 3.00 2.65 2.37 2.01 1.58 1.29 1.03 0.61 0.31 0.15 0.03

BL 6  (Agency Services) 3.97 3.33 2.98 2.60 2.21 1.82 1.39 0.96 0.54 0.32 0.16 0.08

BL 7  (Asset Management) 2.08 1.91 1.70 1.56 1.26 1.03 0.76 0.54 0.42 0.23 0.06 0.01

BL 8  (Retail Brokerage) 7.98 7.30 6.49 5.60 4.88 3.95 3.15 2.19 1.64 0.87 0.38 0.07

TOTAL 43 40 37 34 31 28 24 19 13 6 3 1
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For an international active bank, the number of exceedances Nhigh at the starting

thresholds is 202. In correspondence with the threshold of  € 1 million 37, the POT-PP model

reveals a total number of exceedances in the region of 60. This value is absolutely

comparable with that of large internationally active banks, which provide evidence of an

average number of losses above $1 million, ranging from 50 to 80 per year (see De

Fontnouvelle, Deleuss-Rueff, Jordan and Rosengren, 2003).

However, in both the “lower group” and the “upper group” of banks, the number of

exceedances identified by the model at the highest percentiles (99.5th and 99.9th) declines

remarkably, giving force to the above-mentioned hypothesis of some gaps in the collection

of the very large losses, which the pooling exercise has not been able to recover sufficiently.

In the next section, devoted to computing the capital figure of the BLs, this possible

incompleteness in the number of extreme losses will be mitigated by placing a floor on the,

1-year period, probability of occurrence of the losses with a single-impact magnitude bigger

than the GPDMS(99th) amount: the floor will be the number of exceedances identified by the

POT-PP model just at the  99th percentile 38.

Finally, it should be noted that the number of exceedances across the range of

percentiles is, for a typical international active bank, up to 4-5 times that of a typical

domestic bank; as it will be shown in the next Section, this will have a significant effect on

the magnitude of the capital charge pertinent to this category of banks.

10. Business Lines capital charge

On the basis of the POT tail-frequency and tail-severity values gained in the previous

Sections, it is now possible to compute, for each BL and at any desired percentile, an

estimate of the aggregated figure, which represents the operational risk capital charge

required to cover expected plus unexpected losses in a 1-year holding period.

                                                          
37 Obviously, the threshold of  € 1 million is placed in each BL at a specific empirical percentile, which is not
necessarily identical across the BLs.
38  As it will be seen in the next Section, this assumption implies that the frequency figures used to compute the
99.5th and the 99.9th percentiles of the aggregated losses are stable and equal to the (higher) frequency value
identified by the POT-PP model at the 99th percentile.
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An easy and sound way to compute such an estimate is by means of a similar measure

to that adopted in the Risk Theory for the calculation of the “excess claims net premium”,

i.e. the “average frequency of exceedances” times the “average severity of excess ” (see

Reiss and Thomas, 2001, p. 279-87). In the current exercise it is sufficient to substitute the

“average severity of excesses” with the “average severity of exceedances” (the excesses plus

the threshold) to obtain outcomes that, at any percentile of the aggregated losses, move on

from the “unexpected” to the “expected plus unexpected” side of the overall distribution.

However, before such as exercise may be performed, it is worthwhile to draw attention

to the fact that the extent of the capital figures for rising percentiles depends on the increase

of the severity of the exceedances compared with the reduction of their frequency of

occurrence. Under this perspective, the nice feature of the POT approach, in its POT-GPD

and POT-PP representations, is that it binds analytically the severity of large losses to their

frequency as the corresponding thresholds (say, percentiles) are progressively raised, thus

allowing the two components of the aggregated losses to be jointly addressed. The intensity

of exceedances, λu, identified by (23), or even its time-adjusted figure, NT,u, is the “bridge”

which naturally connects the severity of large losses to their frequency at the initial

threshold, u, while expression (22) for the severity 39, and equations (25) or (26) for the

frequency, constitute the tools that take care, from the starting threshold to the highest

percentiles, of both the components in a mathematical, mutually coherent, manner. So,

through a suitable combination of these outcomes (for instance simply by multiplying them),

a reliable analytical figure for the aggregated losses at any desired (high) percentile can be

derived.

This approach differs sharply from the conventional actuarial approach, where - except

for the rare case in which the expression for the compound distribution of the aggregated

losses is analytically derivable from the distributions of its components of frequency and

severity - the computation of a (high) percentile of the aggregated losses is obtained by

treating the estimate of the severity and the frequency components as a separate, disjointed,

problem and, afterwards, aggregating the corresponding outcomes using numerical,

                                                          
39 Obviously, appropriate expressions, alternative to (26), would be needed if different measures of risk (for
instance GPDES  or GPDVaR ) were adopted  in place of the GPDMS.
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approximation or simulation methods (i.e. the MonteCarlo procedure)40. Owing to the

absence of an analytical basis, these methods require many steps to be generated to calculate

the highest percentiles of the aggregated distribution of losses 41.

Moreover, even supposing that only the large losses constitute the input of the analysis

(for example the data exceeding the 90th percentile of the empirical distribution) and that the

GPD is the selected distribution for the severity of the losses, whenever the frequency is

modelled by conventional actuarial models and an approximation or simulation method is

then implemented to derive the aggregated losses, the figure for the highest percentiles of the

aggregated losses (for example the 99th or 99.9th ones) would be overestimated 42. This

occurs because the frequency of large losses stemming from the procedure would be, on

average, anchored to the (higher) values observable in correspondence with the start of the

tail area (in this case, the 90th percentile) wherein the data are more abundant. Not effectively

addressing the reduction of the frequency of large losses that occurs as their size increase

depends exclusively on the, disjointed and not analytical, method employed to compute the

aggregated losses; this may produce a significant bias in the estimate of the highest

percentiles.

The advantage of the POT approach in the estimate of the tail of the aggregated losses

therefore appears directly connected to the two following properties:

Property 1: the POT method takes into consideration the (unknown) relationship between

the frequency and the severity of large losses up to the end of the distribution;

                                                          
40 Under the condition of homogeneity of the actuarial risk model – i.e. with the loss severity variables (Xi)
i.i.d. and independent from the loss frequency variable (N) – the only quantities of the aggregated loss variable
(S) that are always analytically derivable from the distributions of frequency, P(N), and severity, F(X), are its
moments. In particular the expectation of total losses, E(S) – the so called net premium – can be obtained
simply as the product of the expectations of the frequency, E(N), and the severity, E(X). On the other hand, if
some specific ordinal statistic of S is to be computed (as VaRp or even ESp), it is necessary to identify the
complete form of the compound distribution of the total losses, S=ΣkP(k) Fk*(x),  where Fk*(x) is the k-fold
convolution of F(X). Since the compound distribution, S, can be represented in an analytical way only in very
rare cases, a MonteCarlo simulation is usually used. At each step, the MonteCarlo procedure generates a
number, n, of losses from P(n) and n amounts of losses, xi, from F(x) and then computes the additive quantity,
Sn=Σi=1..nxi. Finally, from the empirical distribution of Sn it is possible to identify the desired percentile.
41 A MonteCarlo simulation performed by David Lawrence (Citigroup) and presented to the 10th annual ICBI
conference in Geneva, 2003, showed that about 1,000,000 data points are required to calculate the 99th

percentile of the aggregated losses, stemming from a compound Poisson (4000)-LogNormal (-4,1.8,3.5)
distribution. More data would be necessary to estimate equivalent or higher percentiles of compound
distributions originated from severity and frequency components with greater values of skewness and kurtosis.
42 This approach is largely adopted by practitioners. For theoretical references, see, inter alia, King, 2001.
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Property 2: the POT method makes it possible to employ a semiparametric approach to

compute the highest percentiles of the aggregated losses, hence reducing the computational

cost and the estimate error related to a not analytical representation of the aggregated losses

themselves. In the POT model, it suffices to select a suitable (high) threshold, on which basis

the model can be built and the relevant parameters estimated. Once the model is correctly

calibrated 43, the total losses (and their percentiles) are easily obtainable by proper analytical

expressions.

Having said that, all the information required to get the capital charge for the BLs are

in Tables 9 and 11, which report, respectively, the tail-severity and the tail-frequency

magnitudes identified by the POT approach. For each BL, the adoption of a related measure

of risk to the “excess claims net premium” produces, as previously noted, the following

expressions:

CaRi = ( )iGPDN MS
low
i for a typical domestic bank

CaRi = ( )iGPDN MS
high
i for a typical international active bank

where CaR is the Capital at Risk and i ranges from the starting threshold, u (as

observed, close to the 90th percentile for all the BLs, except for BL3, around the 96.5th), to

that close to the 99.9th  percentile.

The BLs capital charges for typical international active and domestic banks are

reported in Table 12, where, as anticipated in Section 9, the aggregated losses at the highest

levels of 99.5th  and 99.9th  are forced to make use of the frequency floor (i.e. the number of

exceedances identified by the POT-PP model at the 99th percentile) in place of the (lower)

pertaining annualised intensities44. In the last column of Table 12, the contribution of each

BL to the total capital charge is also reported.

                                                          
43 Depending on the data, it might be necessary, for instance, to relax the hypothesis of  homogeneity of the
parameters in order to incorporate a trend  in the model (see footnote 34).
44 Although this assumption violates the Property 1 of the POT model, it seems a reasonable compromise
between the objectives of circumventing the problem of the, likely, incompleteness in the frequency of the
largest losses in the 2002 LDCE (as noted in Section 9) and not introducing a too high level of discretionality in
the determination of the extreme percentiles of the total losses.
Generally speaking, as the data collection is reputed less satisfactory, a proportionally higher floor for the
frequency to be associated to the highest percentiles of the severity should be adopted. However, in order to not
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Table 12: BLs capital charge

Typical international active bank (Euro ,000)

Typical domestic bank (Euro ,000)

(*) As the starting threshold for Retail Banking is close to the 96.5th  percentile, the CaR is constant below this level.

The findings clearly indicate that operational losses are a significant source of risk for

banks: overall, the 99.9th, 1-year period, CaR amounts to € 1,325 million for a typical

international active bank and to € 296 million for a typical domestic bank. Owing to the
                                                                                                                                                                                  
enlarge the final aggregated figure excessively, this “rule of thomb” should also establish a minimum, preset,
level (for example the 95th percentile) at which the frequence floor can be derived (as an example, interested
readers can verify the increase of the 99.9th  capital charges that would derive from setting the floor equivalent
to the number of exceedances pertaining to the 90th percentile (N90°) instead of the current (N99°)).

BUSINESS LINE 90° 95° 96° 97° 98° 99° 99.5° 99.9° 99.5° with 
floor = N99

99.9° with 
floor = N99

99.9° with 
floor = N99. 
% on Total

BL 1  (Corporate Finance) 4,859 8,192 8,837 10,253 11,458 12,587 17,147 19,693 75,116 175,676 13.3%

BL 2  (Trading & Sales) 9,205 15,199 16,539 18,593 20,710 24,209 27,608 34,027 54,687 218,423 16.5%

BL 3  (Retail Banking) (*) 14,459 14,459 14,459 16,320 20,715 25,142 27,280 29,629 51,860 298,218 22.5%

BL 4  (Commercial Banking) 8,494 14,209 17,605 21,030 25,919 33,707 40,980 60,198 66,376 257,633 19.4%

BL 5  (Payment & Settlement) 1,599 2,781 3,035 3,314 3,927 4,728 5,713 8,515 12,244 100,052 7.6%

BL 6  (Agency Services) 5,058 8,789 9,827 11,185 13,245 15,142 17,707 20,661 34,296 78,886 6.0%

BL 7  (Asset Management) 2,527 3,549 3,730 3,820 3,830 3,727 3,237 2,429 12,389 73,237 5.5%

BL 8  (Retail Brokerage) 5,065 7,551 8,026 8,581 8,883 9,262 9,419 9,290 21,469 122,788 9.3%

TOTAL 51,267 74,729 82,059 93,097 108,687 128,503 149,090 184,442 328,437 1,324,912 100%

BUSINESS LINE 90° 95° 96° 97° 98° 99° 99.5° 99.9° 99.5° with 
floor = N99

99.9° with 
floor = N99

99.9° with 
floor = N99. 
% on Total

BL 1  (Corporate Finance) 1,087 1,832 1,976 2,293 2,562 2,815 3,834 4,404 16,798 39,286 13.3%

BL 2  (Trading & Sales) 2,111 3,486 3,793 4,264 4,750 5,552 6,332 7,804 12,543 50,097 16.9%

BL 3  (Retail Banking) (*) 2,895 2,895 2,895 3,267 4,147 5,033 5,461 5,932 10,382 59,702 20.2%

BL 4  (Commercial Banking) 2,093 3,501 4,337 5,181 6,386 8,305 10,096 14,831 16,353 63,474 21.5%

BL 5  (Payment & Settlement) 400 696 760 829 983 1,183 1,430 2,131 3,064 25,036 8.5%

BL 6  (Agency Services) 1,053 1,829 2,045 2,328 2,756 3,151 3,685 4,300 7,137 16,417 5.6%

BL 7  (Asset Management) 616 865 909 931 933 908 789 592 3,018 17,841 6.0%

BL 8  (Retail Brokerage) 981 1,463 1,555 1,663 1,721 1,795 1,825 1,800 4,160 23,791 8.0%

TOTAL 11,235 16,566 18,270 20,756 24,238 28,742 33,452 41,793 73,455 295,644 100%
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higher frequency of occurrence of losses, Retail Banking and Commercial Banking are the

BLs which absorb the majority of the overall capital figure (about 20 per cent each in both

the groups), while Corporate Finance and Trading & Sales come in at an intermediate level

(respectively close to 13 per cent and 17 per cent). The other BLs stay stably below 10 per

cent in both the groups, with Asset Management and Agency Services showing the smallest

capital charges (around 6 per cent each). These figures are comparable with the allocation

ratios of economic capital for operational risk reported by the banks participating in the 2002

LDCE (see Table 21 of the 2002 LDCE summary).

The last part of this Section is devoted to measuring, for an international active bank,

the contribution of the expected losses to the overall capital figures.

In fact, as stated in Section 5, the results of the conventional inference support the

hypothesis that, in each BL, the small/medium-sized operational risk data (i.e. the body of

the loss distribution) have a different statistical “soul” than the tail-data. This means that the

outcomes of the GPD analysis - in particular the implausible implications for any mean

value of the distribution, owing to an estimate of the shape parameter (ξ) higher or close to 1

- are not applicable to the body-data. Therefore, by focusing the analysis on the body-data

only and making use of the conventional inference, an estimate of the operational risk

expected  severity is tenable in each BL: in particular, the results of the LogNormal model

are used (see Table 3), since this distribution proved to have satisfactory properties in

representing the small/medium-sized area of the data.

Besides, in order to gain information on the (1-year) frequency of occurrence of the

small/medium-sized losses, for each BL, the Poisson and the Binomial Negative

distributions are fitted to the per-bank number of losses having a single-impact magnitude

lower than the threshold identified in the GPD analysis. For all the BLs with the exception of

Retail Banking, the Binomial Negative curve shows a more accurate fit, in consideration of

the substantial skewness to the right of the frequency of data: accordingly, BLs related

parameters estimate for the Binomial Negative models are gained.

The average values of the LogNormal and Binomial Negative models, arisen from the

estimated parameters, are consequently assumed to represent, respectively, the expected
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severity and the expected frequency of the operational risk datasets 45. The expected losses

are obtained by the simple product of these values.

For each BL, Table 13 shows the LogNormal parameters already computed in Section

4 and the Binomial Negative parameters just now estimated. In the last two columns, the

CaR at the 99.9th  percentile (with frequency floor at N99°) and the ratio between the expected

losses and the CaR is reported.

Table 13: BLs expected losses (absolute and relative to CaR99.9) (Euro, 000)

                                                          
45 For Retail Banking, both the Poisson and the Binomial Negative models show a low performance;
consequently the figure for the expected frequency in each BL is gained by an empirical estimate of the average
number of small/medium-sized losses borne by the banks providing data to that BL.

BUSINESS LINE µ σ r p Expected 
severity

Expected 
frequency

Expected 
Losses

CaR 99.9° with 
floor = N99

Expected Losses/ 
CaR99.9°

BL 1  (Corporate Finance) 3.58 1.71 0.59 0.04 154 12.67 1,953 175,676 1.1%

BL 2  (Trading & Sales) 3.64 1.27 0.45 0.01 85 74.45 6,359 218,423 2.9%

BL 3  (Retail Banking) 3.17 0.97 n.a. n.a. 38 347.45 13,172 298,218 4.4%

BL 4  (Commercial Banking) 3.61 1.41 0.52 0.01 100 43.90 4,405 257,633 1.7%

BL 5  (Payment & Settlement) 3.37 1.10 0.61 0.02 53 32.00 1,711 100,052 1.7%

BL 6  (Agency Services) 3.74 1.28 0.47 0.01 96 35.03 3,375 78,886 4.3%

BL 7  (Asset Management) 3.79 1.28 0.60 0.03 100 20.02 2,011 73,237 2.7%

BL 8  (Retail Brokerage) 3.58 1.08 0.34 0.00 64 75.55 4,811 122,788 3.9%

37,797 1,324,912 2.9%

LogNormal 
parameters estimate

Binomial Negative 
parameters estimate

TOTAL
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The results reveal the very small contribution of the expected losses to the total charge:

on average over the BLs it is less than 3 per cent (CaR99.9/EL = 36), with a minimum of 1.1

per cent in Corporate Finance (CaR99.9/EL= 89) and a maximum of 4.4 per cent in Retail

Banking (CaR99.9/EL = 22) 46.

Once again, these outcomes confirm the very tail-driven nature of operational risk.

11. Business Lines capital charge and Gross Income relationship: bottom-up
coefficients

The exercise performed in this Section is limited to the “upper group” of banks, which,

as previously noted, is assumed to contain the internationally active banks. Not enough

information is available in the database to carry out a similar analysis on the “lower group”

of banks, which is supposed to contain the domestic banks.

The objective of the analysis is to determine for each BL (and in the eight BLs as a

whole) the relationship between the capital charge required to an international active bank to

cover (expected plus unexpected) operational risk losses and the value of an indicator

measuring the average business produced in that BL. The indicator of volume of business

chosen is the Gross Income (GI), that it the variable identified by the Basel Committee to

derive the regulatory coefficients in the simpler approaches (Basic and Standardised) of the

new Capital Accord framework.

Therefore, for each BL, an average GI is obtained from the individual GIs of the banks

which furnished operational risk data to that BL; the total GI across the eight BLs is obtained

as the simple sum of these average figures. Then the ratios between the BLs capital charges

(CaR99.9) and the average GIs are computed and compared with the current regulatory

coefficients envisaged in the Basic and Standardised Approach of the Capital Accord (the

so-called Alpha and Betas; see Table 14).

                                                          
46 The same analysis carried out on the “lower group” of banks (the domestic banks) reveals a slightly larger
contribution of the expected losses to the total capital charge: on average they measure about 12 per cent of the
CaR99.9 (with frequency floor N99°), with a minimum of 5 per cent in Corporate Finance and a maximum of 22
per cent in Retail Banking.



67

Table 14: BLs capital charge and Gross Income relationship (Euro ,000).

Bottom-up coefficients vs. current regulatory coefficients

The results indicate that, for an international active bank, the BLs overall capital

charge amounts to 13.3 per cent of the GI, a figure slightly lower than the value of 15 per

cent envisaged in the Basic Approach. On the other hand, there is a more marked variety of

ratios across the BLs. In particular Retail Banking shows the lowest ratio (below 10 per cent)

and Payments & Settlements the highest (above 30 per cent), Trading & Sales, Commercial

Banking, Asset Management and Corporate Finance are in a medium-low area (around 15

per cent) while Retail Brokerage and Agency Services are in a medium-high region (about 20

per cent).

12. Conclusions

The aim of this paper was to illustrate the methodology and the outcomes of the

inferential analysis carried out on the operational risk data collected by the RMG through

2002, pooled by BLs. The exercise aimed, first of all, to compare the sensitivity of

BUSINESS LINE n. banks 
providing data

Capital charge for op. 
risk (1-year at 99.9°)    

A

Average Gross 
Income       

B

Bottom-up 
coefficients   

A/B

Current 
regulatory 

coefficients
BL 1  (Corporate Finance) 33 175,676 1,056,568 16.6% 18%
BL 2  (Trading & Sales) 67 218,423 1,723,483 12.7% 18%
BL 3  (Retail Banking) 80 298,218 3,580,369 8.3% 12%
BL 4  (Commercial Banking) 73 257,633 1,829,454 14.1% 15%
BL 5  (Payment & Settlement) 55 100,052 300,153 33.3% 18%
BL 6  (Agency Services) 40 78,886 375,638 21.0% 15%
BL 7  (Asset Management) 52 73,237 454,130 16.1% 12%
BL 8  (Retail Brokerage) 41 122,788 632,445 19.4% 12%

TOTAL 1,324,912 9,952,241 13.3% 15%
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conventional actuarial distributions and models stemming from the Extreme Value Theory

(EVT) in representing the extreme percentiles of the data sets (i.e. the large losses). Then,

measures of severity and frequency of the large losses in each data set were gained and, by a

proper combination of these estimates, a bottom-up operational risk capital charge was

computed. Finally, for each BL and in the eight BLs as a whole, the contributions of the

expected losses to the capital figures were evaluated and the relationships between the

capital charges and the corresponding average level of Gross Incomes were determined.

From a statistical point of view, the results indicate a low performance of conventional

severity models in describing the overall data characteristics, summarizable in very high

levels of both skewness to the right and kurtosis. In fact any traditional distribution applied

to all the data in each BL tends to fit the central observations, hence failing to take the

extreme percentiles into adequate consideration. On the other hand, the exercise shows that

the Extreme Value model, in its Peaks Over Thresholds representation, explains the

behaviour of the operational risk data in the tail area well.

Moreover, in the conventional actuarial approach, the distribution of the aggregated

losses is usually obtained by treating the estimate of its severity and frequency components

as a separate, disjointed, problem and, afterwards, aggregating the corresponding outcomes

using not analytical methods. One of the main remarks coming out of this paper is that, if the

aim of the analysis is to estimate the extreme percentiles of the aggregated losses, the

treatment of these two components within a single overall estimation problem may reduce

the estimate error and the computational costs 47. The Peaks Over Thresholds approach

appears to be a suitable and consistent statistical tool to tackle this issue, since it takes into

account the (unknown) relationship between the frequency and the severity of large losses up

to the end of the distribution and hence makes it possible to employ a semiparametric

approach to compute any high percentile of the aggregated losses.

As the exercise makes clear, the EVT analysis requires that specific conditions be

fulfilled in order to be worked out, the most important of which are the i.i.d. assumptions for

the data and, as concerns the GPD model, a satisfactory stability of the inference to an

                                                          
47   The extent of the estimate error which derives from employing approximation or simulation methods, as the
MonteCarlo procedure, for the detection of high percentiles of the operational risk aggregated losses will be
matter of  a next paper.
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increase of the pre-set (high) threshold. Actually, this seems to be the case for each BL data

set that originates from pooling the operational risk losses collected through the 2002 LDCE.

In any case, it should borne in mind that, even if suitable tools are available in the Extreme

Value literature for handling data with specific characteristics (such as trend, seasonality and

clustering), a high sensitivity of the model remains for the largest observed losses and the

very extreme quantile estimates.  As Embrechts states (see Embrechts et al., 1997): “The

statistical reliability of these estimates becomes very difficult to judge in general. Though we

can work out approximate confidence intervals for these estimators, such constructions

strongly rely on mathematical assumptions which are unverifiable in practice”.

Concerning the outcomes of the analysis, there is clear evidence of the considerable

magnitude of operational risk in the businesses carried out by the 2002 LDCE banks as well

as of the differences in the riskiness of the BLs (in terms of both the time-unconditional

severity and the 1-year aggregated capital figure). These differences persist after comparing,

for a typical international active bank, the BLs capital figures with the average Gross

Incomes and obtaining ratios as the coefficients set in the revised framework of the Capital

Accord. In practice, the bottom-up analysis of the 2002 LDCE data suggests that the actual

operational riskiness of the BLs may be captured in a more effectively way by setting, for

the regulatory coefficients of the Standardised Approach, a wider range than the current one;

besides, for the eight BLs as a whole, the implied capital ratio results to be a slightly lower

figure than the coefficient envisaged in the Basic Approach.

Anyway, as frequently noted along this paper, the soundness of the exercise relies on

the (unknown) actual quality of the data provided by the banks participating in the 2002

LDCE. In light of that, it would be extremely valuable that, in the course of the

implementation of the new Capital Accord and when more data will be available to

individual banks, consortia, academic circles, etc., the people involved in the quantification

of operational risk make use of the statistical model implemented in this exercise to get

pertinent figures of BLs capital charges and implied coefficients and hence test the

robustness of the model itself and the consistency of its outcomes.
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