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abstract

This paper defines two distribution free goodness-of-fit test statistics for copulas and states

their asymptotic distributions under some composite parametric assumptions. The results are

stated formally in an independent identically distributed framework, and partially in time-

dependent frameworks. We provide a simulation study and an empirical example by studying

the dependency between several couples of equity indices.

Résumé

Nous définissons deux statistiques libres pour des tests d’adéquation de copules ; nous établissons

leurs propriétés asymptotiques sous des hypothèses simples et composites. Les résultats sont

valables formellement dans un cadre iid, et étendus partiellement dans un cadre de séries

temporelles. Nous illustrons les résultats par des simulations et par l’étude de la dépendance

entre plusieurs couples d’indices boursiers.

Key words: Copulas, GOF tests, Kernel, Time Series, Basket derivatives.
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1 Introduction

In modern finance and insurance, to identify dependence structures between assets is becoming

one of the main challenges we are faced with. Dependence must be evaluated for several

purposes : pricing and hedging of credit sensitive instrument, particularly n-th to default

and CDO’s 1, basket derivatives and structured products 2, credit portfolio management 3,

credit and market risk measures 4. Copulas are recognized as key tools to analyze dependence

structures. They are becoming more and more popular among academics and practitioners

because it is well known the returns of financial assets are non gaussian and exhibit nonlinear

features. Thus, multivariate gaussian random variables do not provide satisfying models 5.

The copula of a multivariate distribution can be considered as the part describing its

dependence structure as a complement to the behavior of each of its margins. One attractive

property of copulas is their invariance under strictly increasing transformations of the mar-

gins. Actually, the use of copulas allows to solve a difficult problem, namely to find a whole

multivariate distribution, by performing two easier tasks. The first step starts by modelling

every marginal distribution. The second step consists of estimating a copula, which summa-

rizes all the dependencies between margins. However this second task is still in its infancy for

most of multivariate financial series, partly because of the presence of temporal dependencies

(serial autocorrelation, time varying heteroskedasticity,...) in returns of stock indices, credit

spreads, interest rates of various maturities...

Estimation of copulas has essentially been spread out in the context of i.i.d. samples. If

the true copula is assumed to belong to a parametric family C = {Cθ, θ ∈ Θ}, consistent and

asymptotically normally distributed estimates of the parameter of interest can be obtained

through maximum likelihood methods. There are mainly two ways to achieve this : a fully

parametric method and a semiparametric method. The first method relies on the assumption

of parametric marginal distributions. Each parametric margin is then plugged in the full
1see Li [45],who proposed a gaussian copula-based methodology for pricing of first-to default, Laurent and

Gregory [44] and the references therein.
2For instance, Rosenberg [57] estimates copulas for the valuation of options on DAX30 and S&P500 indices.

Cherubini and Luciano [12] calibrate Frank’s copula for the pricing of digital options and options that are based

on the minimum on some equity indices. Genest et al. [31] study the relation between multivariate option

prices and several parametric copulas, by assuming a GARCH type model for individual returns.
3see e.g. Frey and McNeil [28]
4for instance Schönbucher [61], Schönbucher and Schubert [62], among others
5see Bouyé et al. [7] for a survey of financial applications, Frees and Valdez [27] for use in actuarial practice.

Patton [49, 50] and Rockinger and Jondeau [56] introduce copulas for modelling conditional dependencies.
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likelihood and this full likelihood is maximized with respects to θ. Alternatively and without

parametric assumptions for margins, the marginal empirical cumulative distribution functions

can be plugged in the likelihood. These two commonly used methods are detailed in Genest

et al. [29] and Shi and Louis [63] 6.

Beside these two methods, it is also possible to estimate a copula by some nonparametric

methods based on empirical distributions, following Deheuvels [14, 15, 16] 7. The so-called

empirical copulas look like usual multivariate empirical cumulative distribution functions.

They are highly discontinuous (constant on some data-dependent pavements) and cannot be

exploited as graphical device. Recently, smooth estimates of copulas in a time-dependent

framework have been proposed in Fermanian and Scaillet [25]. They allow to guess which

parametric copula family should be convenient. This intuition needs to be properly verified

to be validated. In a statistical sense, it means to lead a goodness-of-fit test on the copula

specification. This is our topic.

In section 2, we specify our notations and the GOF tests main results in a multidimensional

framework. For i.i.d. data sets, we propose a first simple chi-square type test procedure in

section 3. A more powerful and more sophisticated test statistics is described in section 4.

The extension to time-dependent series are specified in section 5. The proofs are postponed

in the appendix.

2 The framework

Consider an i.i.d. sample of d-dimensional vectors (Xi)i=1,...,n. Denote Xi = (Xi1, . . . , Xid).

and H, resp. C, the cumulative distribution function, resp. the copula, of X. Usually, a GOF

test tries to distinguish between two assumptions :

H0 : H = H0, against Ha : H 6= H0, when the zero-assumption is simple, or

H0 : H ∈ F , against Ha : H 6∈ F , when the zero-assumption is composite.

Here, H0 denotes some known cdf, and F = {Hθ, θ ∈ Θ} is some known parametric family of

cdfs’.

Let us dealing first with simple assumptions. When d = 1, the problem is relatively

simple. By considering the transformation of X by H, the empirical process tends weakly to
6see Cebrian, Denuit and Scaillet [9] for inference under misspecified copulas, Chen and Fan [10] for inference

with β-mixing processes.
7see some weak convergence properties and extensions in Fermanian et al. [24].
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a uniform Brownian bridge, under the null assumption. Thus, a lot of distribution free GOF

statistics are available : Kolmogorov-Smirnov, Anderson-Darling...

To deal with the composite assumption, it is necessary to consider first some estimates

of θ. The simplest solution is surely the chi-square test statistics, when θ is estimated by

maximum likelihood over grouped data 8. Actually, the one dimensional case has been deeply

studied for a long time. A good reference is D’Agostino and Stephens [13].

In a multidimensional framework, it is more difficult to build distribution free GOF tests,

particularly because the previous transformation Y = H(X) fails to work. More precisely,

the law of Y is no longer distribution free. Thus, several authors have proposed some more

or less satisfying solutions.

• Justel et al. [39] have proposed to use the transformation of Rosenblatt before testing

a simple GOF assumption. But their method is not really distribution free, because it

is necessary to calculate explicitly the transformation. The work is translated from the

evaluation of a limiting asymptotic variance (dependent on H0) towards a transforma-

tion of the data set (dependent on H0). Moreover, the implementation is computation-

ally intensive, because one needs to consider every permutations over (1, . . . , d) and the

extension to composite assumptions is unknown.

• Several authors have tried to replace an evaluation over a d-dimensional space by a

univariate function. Therefore, they consider some families of subsets in Rd indexed

by a univariate parameter, for instance Aλ = {x|H(x) ≤ λ}, λ ∈ [0, 1]. Then, some

Kolmogorov-Smirnov type test statistics are available. See Saunders and Laud [60],

Foutz [26] or more recently Polonik [54]. The drawback is here to evaluate some subsets

like Aλ and to choose the “best” ones. This latter point is the purpose of Polonik [54].

Moreover, extensions to composite assumptions seem to be difficult, even impossible.

• Khmaladze ( [41, 42] and especially [43]) has transformed the usual empirical process

into an asymptotically distribution free empirical process, for simple and composite

assumptions. These techniques are the most conceptually satisfying. Nonetheless, it

seems to be to difficult to adapt them in slightly different frameworks, such as copulas,

because they are based on some intricate transformations of empirical processes.

8which often necessitates some ad-hoc estimation procedures.
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Actually, the simplest way to build GOF composite tests for multivariate r.v. is to consider

multidimensional chi-square tests, as in Pollard [53]. To do this, it is necessary to choose some

subsets in Rd. This choice produces some lack of power and the “best way” to choose these

subsets is questionable.

Our goal is to find a technique to solve the similar GOF problem for copulas, say to

distinguish between two assumptions :

H0 : C = C0, against Ha : C 6= C0, when the zero-assumption is simple, or

H0 : C ∈ C, against Ha : C 6∈ C, when the zero-assumption is composite.

Here, C0 denotes some known copula, and C = {Cθ, θ ∈ Θ} is some known parametric family

of copulas. The copula is the cdf of (F1(X1), . . . , Fd(Xd)). The difficulty is coming from the

fact the marginal cdfs’ Fj are unknown. Particularly, the chi square test procedures do not

work anymore in general, when replacing marginal cdfs’ by some usual estimates.

For all these reasons, the general problem of GOF test for copulas has not been dealt

conveniently by authors. Some of them use the bootstrap procedure to evaluate the limiting

distribution of the test statistic (Andersen et al. [3], e.g.). Genest and Rivest [29] solve the

problem for the case of archimedian copulas, for which the problem can be reduced to a one

dimensional one 9, for which some standard methods are available. For instance, Frees and

Valdez [27] use Q-Q plots to fit the “best” archimedian copula. None of the authors have

dealt the case of time dependent copulas 10. Recently, some authors have applied Rosenblatt’s

transformation (cf [58]) to the original multivariate series, like in Justel et al. [39], before

testing the copula specification: Breymann et al. [8], Chen et al. [11] 11. Nonetheless, as

we said previously, the use of Rosenblatt’s transformation is a tedious preliminary, especially

with high dimension variables, and it is model specific. Thus the test methodology is not

really distribution-free.

Note that we could build some test procedures based on some estimates of X’s cdf by

modelizing the marginal distributions simultaneously. It seems to be a good idea, because

some “more or less usual” tests are available to check the GOF of H itself. Nonetheless, it
9see the survey of de Matteis [17]

10with the exception of Patton [49, 50]. But the latter author tests all the joint specification and not only

the copula itself.
11The latter authors compare the smoothed copula density of their transformed r.v. to the uniform density

by means of a L2 criterion, as in Hong and Li [40]. So their methodology is relatively closed to ours (see below

the test statistics T ).
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is not our point of view. Indeed, doing so produces tests for the whole specification - the

copula and the margins - but not for the dependence structure itself - the copula only-. A

slightly different point of view could be to test each marginal separately in a first step. If

each marginal model is accepted, then a test of the whole multidimensional distribution can

be led (by the previously cited methodologies). Nonetheless, such a procedure is heavy, and it

is always necessary to deal with a multidimensional GOF test. Moreover, it is interesting to

study dependence in depth first, independently of the modelization of margins. For instance,

imagine the copula links the short not risky interest rate with some credit spreads. It should

be useful to keep the possibility to switch from one model of the short rate to another (Vasicek,

Longstaff and Schwartz, BGM...). Since this research area is very active, some new models

appear regularly, others are forgotten, and current models are often improved. By choosing

the copula independently of the marginal models, such evolutions are clearly very easy. Lastly,

no universally accepted credit spreads model has emerged yet.

To build a GOF test, a natural way would be to use to asymptotic behavior of the empirical

copula process. According to Fermanian et al. [24], we know that the bivariate empirical

copula process n1/2(Cn − C0) tends in law, under the null simple assumption, towards the

gaussian process GC0 , where

GC0(u, v) = BC0(u, v)− ∂1C0(u, v)BC0(u, 1)− ∂2C0(u, v)BC0(1, v), (u, v) ∈ [0, 1]2.

We have denoted by BC a brownian bridge on [0, 1]2, such that

E[BC(u, v)BC(u′, v′)] = C(u ∧ u′, v ∧ v′)− C(u, v)C(u′, v′),

for every u, u′, v, v′ ∈ [0, 1]. Here, a ∧ b = inf(a, b). Unfortunately, this limiting process is

a lot more complicated than with the multidimensional brownian bridge BC0 . For instance,

the covariance between GC0(u, v) and GC0(u
′, v′) is the sum of 18 terms (while there are

2 terms in BC0 ’s case). These terms involve C0 and its partial derivatives. Thus, GOF

tests based directly on empirical copula processes Cn seem to be unpractical, except by

bootstrapping. Nonetheless, such procedures are computationally intensive. Even if the

bootstrapped empirical copula process is weakly convergent (Fermanian et al. [24]), we prefer

to propose a more usual test procedure.

3 A simple direct chi-square approach

There exists a simple direct way to circumvent the difficulty. Indeed, by smoothing the

empirical copula process, we get an estimate of the copula density. The limit of this statistics
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is far simpler than GC0 . Let us consider first an i.i.d. framework.

For each index i, set the d-dimensional vectors

Yi = (F1(Xi,1), . . . , Fd(Xi,d)), and

Yn,i = (Fn,1(Xi,1), . . . , Fn,d(Xi,d)),

denoting by Fk and Fn,k the true and the empirical k-th marginal cdf of X. Obviously, the

copula C is the cdf of Yi.

The empirical copula process we consider here is

Cn(u) =
1
n

n∑
i=1

d∏
k=1

1(Fn,k(Xi,k) ≤ uk),

instead of the “usual” copula process

C∗
n(u) = Fn(F−

n,1(u1), . . . , F−
n,d(ud)),

F−
n,k(u) = inf{t|Fn,k(t) ≥ u}.

It is easy to verify these two empirical processes differ only by the small quantity n−1 at most.

Thus, it would not be an hard task to adapt the proofs to C∗
n.

We will assume the law of the vectors Yi has a density τ with respects to the Lebesgue

measure. By definition the kernel estimator of a copula density τ at point u is

τn(u) =
1
hd

∫
K

(
u− v
h

)
Cn(dv) =

1
nhd

n∑
i=1

K

(
u−Yn,i

h

)
, (3.1)

where K is a d-dimensional kernel and h = h(n) is a bandwidth sequence. More precisely,∫
K = 1, h(n) > 0, and h(n) → 0 when n → ∞. As usual, we denote Kh(·) = K(·/h)/hd.

For convenience, we will assume

Assumption (K). The kernel K is the product of d univariate even compactly supported

kernels Kr r = 1, . . . , d. It is assumed pK -times continuously differentiable.

These assumptions are far from minimal. Particularly, we could consider some multivariate

kernels whose support is the whole space Rd, if they tend to zero “sufficiently quickly” when

their arguments tend to the infinity (for instance, at an exponential rate, like for the gaussian

kernel). Since this speed depends on the behavior of τ , we are rather the simpler assumption

(K).
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As usual, the bandwidth needs to tend to zero not too quick.

Assumption (B0). When n tends to the infinity, nhd →∞, nh4+d → 0 and

nh3+d/2/(ln2 n)3/2 −→∞.

We have set ln2 n = ln(lnn). Assumption (B0) can be weakened easily by assuming (K)

with pK > 3 (see details in the proofs).

Moreover, a certain amount of regularity of τ is necessary, for instance

Assumption (T0). τ(u, θ) and its first two derivatives with respects to u are uniformly

continuous on V(uk) × V(θ0), for every vectors uk, k = 1, . . . ,m, denoting by V(uk) (resp.

V(θ0)) an open neighborhood of uk (resp. θ0).

In the appendix, we prove :

Theorem 1. Under (K) with pK = 3, (B0) and (T0), for every m and every vectors

u1, . . . ,um in ]0, 1[d, such that τ(uk) > 0 for every k, we have

(nhd)1/2 ((τn − τ)(u1), . . . , (τn − τ)(um)) law−→
T→∞

N (0,Σ),

where Σ is diagonal, and its k-th diagonal term is
∫
K2.τ2(uk).

Now, imagine we want to build a procedure for a GOF test with some composite zero

assumption. Under H0, the parametric family is C = {Cθ, θ ∈ Θ}. Assume we have estimated

θ consistently by θ̂, and

θ̂ − θ0 = OP (n−1/2). (3.2)

We denote by τ(·, θ0) (or simpler τ when there is no ambiguity) the “true” underlying copula

density. Clearly, τ(u, θ̂) − τ(u, θ0) tends to zero quicker than (τn − τ)(u) under (T0) and

equation (3.2). Thus, a simple GOF test could be

S =
nhd∫
K2

m∑
k=1

(τn(uk)− τ(uk, θ̂))2

τ(uk, θ̂)2
·

Corollary 2. Under the assumptions of theorem 1 and equation (3.2), if τ(u, θ) is continu-

ously differentiable with respects to θ in a neighborhood of θ0 for every u ∈]0, 1[d, then S tends

in law towards a m-dimensional chi-square distribution under the composite zero-assumption

H0.

We could replace τ by the convolution ofK and τ in theorem 1 and corollary 2. This allows

to remove the assumption nh4+d −→ 0. Indeed, this assumption prevents us from using the

usual asymptotically optimal bandwidth that minimizes the asymptotic mean squared error.
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The points (uk)k=1,...,m are chosen arbitrarily. They could be chosen in some particular

areas of the d-dimensional square, where the user seeks a good fit. For instance, for risk

management purposes, it would be fruitful to consider some dependencies in the tails 12. For

the particular copula family C, it is necessary to specify these areas.

Clearly, the power of the S test depends strongly on the choice of the points (uk)k=1,...,m.

This is a bit the same drawback as the choice of cells in the usual GOF Chi-square test. With-

out a priori, it is always possible to choose a uniform grid of the type (i1/N, i2/N, . . . , id/N),

for every integers i1, . . . , id, 1 ≤ ik ≤ N − 1. Nonetheless, the number m will become very

large when the dimension d increases.

More seriously, the power of the test will not be very large surely. Actually, the adequacy

of the fit for a finite number of points is not a guarantee for a good adequacy of the whole

copula. That is why we propose another test statistics. This statistics will take part of the

whole underlying distribution potentially, and not only of a finite number of points.

4 The main test

This test is based on the proximity between the smoothed copula density and the estimated

parametric density. Under H0, they will be near each other. To measure such a proximity,

we will invoke the L2 norm. To simplify, denote the estimated parametric τ(·, θ̂) density by

τ̂ . Consider the statistics

Jn =
∫

(τn −Kh ∗ τ̂)2(u)ω(u) du,

where ω is a weight function, viz a measurable function from [0, 1]d towards R+. Note that we

consider the convolution between the kernel Kh and τ̂ instead of τ̂ itself. This trick allows to

remove a bias term in the limiting behavior of Jn (see Fan [19]). Note that the expectation of

τn(u) is different from Kh∗τ(u), contrary to the usual i.i.d. density case. This will complicate

slightly the proof.

The minimization of the criterion Jn is known to produce consistent estimates in numer-

ous situations. These ideas appear first in the seminal paper of Bickel and Rosenblatt [4].

They are applied in the usual density case for i.i.d. observations. Rosenblatt [59] extended

the results in a two-dimensional framework and discusses consistency with respects to several
12Generally speaking, the tails are related to large values of each margins, so the uk should chosen near the

boundaries. Nonetheless, some particular directions could be exhibited (the main diagonal, for instance).

8



alternatives. Fan [19] extended these works to deal with every choices of the smoothing param-

eter. The comparison of some nonparametric statistics-especially nonparametric regressions-

and their model-dependent equivalents has been formalized in a lot of papers in statistics and

econometrics : Härdle and Mammen [37], Zheng [66], Fan and Li [20] 13, among others.

Similar results have been obtained for dependent processes more recently : Fan and Ul-

lah [23], Hjellvik et al. [36], Gouriéroux and Tenreiro [33]... For instance, Aı̈t-Sahalia [2]

applies these techniques to find a convenient specification for the dynamics of the short inter-

est rate. Recently, Gouriéroux and Gagliardini [34] use such a criterion to estimate possibly

infinite dimensional parameters of a copula function 14. Instead of for inference purposes, we

will use Jn as a test statistics, like in Fan [19].

Let us assume that we have found a convenient estimator of θ.

Assumption (E). There exists θ̂ ∈ Rq such that

θ̂ − θ0 = n−1A(θ0)−1
n∑

i=1

B(θ0,Yi) + oP (rn), (4.1)

and rn tends to zero quicker than n−1/2(ln2 n)−1/2 when n tends to the infinity. Here, A(θ0)

denotes a q × q positive definite matrix and B(θ0,Y) is a q-dimensional random vector.

Moreover, E[B(θ0,Yi)] = 0 and E[‖B(θ0,Yi)‖2] <∞.

Particularly, under (E), θ̂ − θ = OP (n−1/2). Typically, B(θ, ·) is a score function. In

section D in the appendix we prove these assumptions are satisfied particularly for the usual

semiparametric maximum likelihood estimator whose theoretical properties are detailed in

Genest et al. [29] and Chen and Fan [10]. But more general procedures can be used, like

M -estimators.

Assumption (T). For some open neighborhood V(θ0) of θ0,

• τ(u, θ) and its first two derivatives with respects to θ are uniformly continuous on

[0, 1]d × V(θ0), or

• τ(u, θ) and its first two derivatives with respects to θ are uniformly continuous on

[ε, 1− ε]d × V(θ0), for some ε > 0, and the support of ω is included in [ε0, 1− ε0]d, for

some ε0 > ε.
13see numerous references in Fan and Li [22]
14for instance, the univariate function defining an archimedian copula
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When τ and its derivatives with respects of θ are uniformly bounded on [0, 1]d ×V(θ0), ω

can be chosen arbitrarily. Unfortunately, it is not always the case. For instance, by choosing

a bivariate gaussian copula density. To avoid technical troubles, we reduce the GOF test to

a strict subsample of [0, 1]d, say ω’s support.

Assumption (B). nhd −→∞ and nh4+d/2/ ln2
2 n −→n→∞

∞.

Actually, the latter condition could be relaxed. It is sufficient to expand K up to higher

order terms. We had chosen the order 4 so that condition (B) is not too strong. But, it is

possible to exchange some degree of regularity of K against less constraints on the bandwidth.

Theorem 3. Under assumptions H0, (T), (E), (B) and (K) with pK = 4, we have

nhd/2

(
Jn −

1
nhd

∫
K2(t).(τω)(u− ht) dt du +

1
nh

∫
τ2ω.

d∑
r=1

∫
K2

r

)
law−→

n→∞
N (0, 2σ2),

σ2 =
∫
τ2ω ·

∫ {∫
K(u)K(u + v) du

}2

dv.

Thus, a test statistics could be

T =
n2hd

(
Jn − (nhd)−1

∫
K2(t).(τ̂ω)(u− ht) dt du + (nh)−1

∫
τ̂2ω.

∑d
r=1

∫
K2

r

)2

2
∫
τ̂2ω ·

∫
{
∫
K(u)K(u + v) du}2 dv

·

Corollary 4. Under the assumptions of theorem 3, the previous statistics T tends in law

towards a chi-square distribution.

See the proof in the appendix. Since the kernel K is even, we can replace the second

term of the previous numerator by the simpler expression −(nhd)−1
∫
K2.

∫
τ̂ω. Moreover,

the third term in the numerator can be replaced by

2
nh

∑
r

∫
K(t)Kr(tr)τ̂(u− ht)τ(u)ω(u) dt du− 1

nh

∑
r

∫
τ̂2ω ·

∫
K2

r .

This expression is a consequence of the proof, and offers surely a better approximation, even

if it is a bit more complicated.

Moreover, under some additional regularity assumptions, we could replace τ̂ by τn inside

T . Indeed, it can be proved the kernel estimator of the density τ(u) converges uniformly

with respects to u on ω’s support at a convenient rate. The proof requires to control the

uniform upper bound of the remainder terms Rk(u), k = 1, 2, 3 that are defined in the proof
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of theorem 1. This can be done by applying lemma B1 in Ai [1], e.g. The details are left to

the reader.

Note that our test statistics differs from similar GOF test statistics in an i.i.d. framework

with usual density functions (Fan [19], e.g.). Indeed, there is an additional term

(nh)−1
∫
τ̂2ω.

d∑
r=1

∫
K2

r ,

in T . This is the price to work with copulas, and to estimate the margins empirically.

Nonetheless, when d > 2, this additional term is negligible with respects to

(nhd)−1
∫
K2(t).(τ̂ω)(u− ht) dt du.

5 Extension to time-dependent series

Now, we would relax the assumption of independence between the random vectors (Xi)i≥0.

Actually, most of financial series are dependent, sometimes strongly. This is particularly true

for fixed income underlyings 15 16.

Now, consider a Rd-valued process (Xi)i≥1. It is assumed stationary. In practice, we are

interested in the prediction of future values knowing the past. So, we should specify and test

conditional copulas (see Patton [49, 50], e.g.). As in Chen and Fan [10], we restrict ourselves

to the particular case when the margins are unconditional. For instance, if (Zi)i≥1 is an

one-order Markov process, we can set Xi = (Zi, Zi−1). Knowing the copula of Xi and the

stationary distribution of Zi is equivalent to specify the dynamic of process Z.

It seems to be relatively easy to extend theorem 1. To be specific assume

Assumption (M). (Xi)i≥1 is strictly stationary. Moreover, this process is β-mixing 17,

viz

βp ≡ sup
i≥1

E

 sup
A∈M∞

i+p

|P (A|Mi
−∞(X))− P (A)|

 −→
p→∞

0,

denoting by Mb
a, a ≤ b, the sigma algebra generated by (Xa, . . . ,Xb). Moreover, βp = O(ρp)

for some 0 < ρ < 1 and every integer p.
15think of the dynamics of the term structure of interest rates, for instance
16By differentiating series of indices or rates, dependence between successive observations is weakened signif-

icantly but not disappears. For instance, it is well-known the covariances of squared returns exhibit significant

clustering. That is why a lot of GARCH-type models have been proposed to deal with these features, in the

literature.
17or absolutely regular
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This assumption is commonly used, even if it is far from the weakest one (see Doukhan [18]

for some other mixing concepts). The geometric decay is encountered for a lot of processes.

For instance, Mokkadem [48] and Pham and Tran [52] show that linear stationary ARMA

processes satisfy assumption (M) under some conditions of regularity. It is the case for bilinear

models (Pham [51]), nonlinear autoregressive models (Mokkadem [48]) and nonlinear ARCH

models (Masry and Tjøstheim [46]).

Assumption (B1). h ln2 n→ 0 and nhd+4/ ln4 n −→∞.

Assumption (T1). The density τi,j,k,l of (Yi,Yj ,Yk,Yl) exists whenever i < j < k < l,

is integrable and supi<j<k<l

∫
τi,j,k,l <∞. Moreover, with obvious notations,

sup
i<j

∫
|τi,j(u,v)− τ(u)τ(v)| du dv <∞.

In the appendix, we prove :

Theorem 5. Under (K) with pK = 2, (B1), (M), (T0) and (T1), for every m and every

vectors u1, . . . ,um in ]0, 1[d such that τ(uk) > 0, we have

(nhd)1/2 ((τn −Kh ∗ τ)(u1), . . . , (τn −Kh ∗ τ)(um)) law−→
T→∞

N (0,Σ),

where Σ is diagonal, and its k-th diagonal term is
∫
K2.τ2(uk).

Thus, the test statistics S can be used exactly as in corollary 2. Notice we have used

Kh ∗ τ in the latter theorem instead of τ itself. Indeed, to remove the bias term Kh ∗ τ − τ ,

we need to assume nhd+4 → 0. But it can not be done in our case because of (B1). We get

the test statistic

S̃ =
nhd∫
K2

m∑
k=1

(τn(uk)−Kh ∗ τ(uk, θ̂))2

τ(uk, θ̂)2
·

A natural idea would be to extend the test statistic T for this dependent framework.

Such an idea is surely possible. The tools we need is a Central Limit Theorem for degenerate

U-Statistics of β−mixing processes. Fan and Li [21] have provided such a tool. Moreover,

Fan and Ullah [23] have studied the asymptotic behavior of
∫
(fn −Kh ∗ f̂)2 under the null

hypothesis, when dealing with the marginal density f of a β-mixing process. Therefore, if we

prove all the remainder terms that appear in the proof of theorem 3 are negligible, we can

state the same results for dependent series.
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By applying the same techniques as in theorem 5’s proof, it seems to us we can achieve

this goal. Particularly, we need to use Lemma 6 to control the distance between joint densities

and products of marginal densities. Unfortunately, to state formally the result, it is necessary

to investigate cautiously a lot of terms. Since it is very tedious, we are rather to conjecture:

Conjecture. Under (M) and some technical assumptions, theorem 3 and corollary 4 are true

for β-mixing processes. Therefore, the test statistics T is still available.

6 A short simulation study

To asses the power of our test statistics, we have led a simple analysis by simulation. We

generate some samples whose copula is the mixture of a bivariate frank’s copula and an

independent copula, viz

Cθ,α(u, v) = αuv − (1− α)
θ

ln
(

1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1

)
, θ 6= 0, α ∈ [0, 1].

More precisely, we generate iid uniform samples (Ui,1, Ui,2)i=1,...,200 on [0, 1]2. For every

i = 1, . . . , 200, we get

Xi,1 = Φ−1(Ui,1) and Xi,2 = Φ−1(Vi),

where Vi satisfies the equality ∂1Cθ,α(Ui,1, Vi) = Ui,2. Thus, the random vectors (Xi,1, Xi,2)

have the desired copula.

We compute the test statistics S and T with these data sets. Concerning S, we choose

81 points on the uniform grid (i/10, j/10), i, j = 1, . . . , 9. We use the convolution between K

and τ̂ instead of τ̂ itself. Concerning S and T , the kernel is a sufficiently regular compactly

supported kernel, say

K(u) =
(

15
16

)2 2∏
k=1

(1− u2
k)

21(uk ∈ [0, 1]).

The bandwidths are chosen by the usual Silverman’s rule (1986) :

ĥ =

√
(σ2

1 + σ2
2)/2

n1/6
,

denoting by σ2
k the empirical variance of Fn,k, k = 1, 2. Note that these two variances are

the same in our case because they depend on the sample size only. The weight function w

13



is chosen as w(u) = 1(u ∈ [0.01, 0.99]). The parameters of the copulas are estimated by the

usual semiparametric maximum likelihood procedure (see Shi and Louis [63]).

For different values for α and θ, we compute the two test statistics S and T . We have made

100 replications for 200 points samples: see table 1. When α is zero, we verify the asymptotic

level 0.05 is underestimated by all but one case (thus the test is a bit too conservative).

When α increases, the percentages of rejection grow, especially for the T test. The latter

seems to be more powerful than S, even if this advantage weakens when the copula is more

and more far from the Frank’s copula (viz when the zero assumption is more and more false).

When α is near 1, note that the power is very weak. This is due to the fact the independent

copula belongs to the boundary of the Frank’s family (when leaving θ to tend to zero).

Moreover, the reported powers are more and more high when θ is larger and larger, because

the corresponding Frank’s copula becomes far away from the independent one.

These partial results are very convincing. Particularly, with very small sample sizes, the

power of the test T is far from ridiculous even when the proportion of perturbation is weak.

Our results seem to be better than those reported by the test 1 proposed by Chen et al. [11].

In the latter case, the powers are near zero when the sample sizes is not greater than 500 for

every level of perturbation but with a different model. Nonetheless, our results need to be

completed by a more deep simulation study.

7 Empirical results

We have tried to find a convenient copula that would describe the dependence structure be-

tween the daily returns of several couples of equity indices: S&P500 and Nikkei225, Nasdaq

Composite and Dow Jones Industrial, DAX30 and Swiss MI. These couples of indices are

considered in commonly traded basket derivatives in the equity market. Each data set con-

sists of 3, 373 observations from January 1st 1990 to April 12th 2002. The data have been

downloaded from Datastream.

We will consider five families of bivariate copulas.

• gaussian copulas : C(u, v) = Φρ(Φ−1(u),Φ−1(v)), 0 ≤ u, v ≤ 1, |ρ| < 1. Here, Φρ

denotes the bivariate cdf of a gaussian vector whose components have unit variance and

correlation ρ.
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% of noise parameter % of rejection (test S) % of rejection (test T )

θ = 5 0 2

θ = 10 0 0

α = 0.0 θ = 15 0 1

θ = 20 0 1

θ = 25 0 8

θ = 5 0 0

θ = 10 0 0

α = 0.1 θ = 15 0 7

θ = 20 0 22

θ = 25 0 60

θ = 5 1 1

θ = 10 1 5

α = 0.2 θ = 15 3 36

θ = 20 17 80

θ = 25 31 95

θ = 5 3 3

θ = 10 13 21

α = 0.3 θ = 15 18 67

θ = 20 57 95

θ = 25 84 100

θ = 5 12 8

θ = 10 21 8

α = 0.6 θ = 15 56 50

θ = 20 86 84

θ = 25 99 98

θ = 5 2 1

θ = 10 3 0

α = 0.9 θ = 15 6 0

θ = 20 2 2

θ = 25 37 3

Table 1: Percentages of rejection at 5% level with n = 200 and 100 replications.
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• Student copulas, whose density is

τ(y1, y2) =
Γ((ν + 2)/2))

Γ(ν/2)
√

1− ρ2πν

(
1 + (y2

1 + y2
2 − 2ρy1y2)/(ν(1− ρ2))

)−(ν+2)/2
, |ρ| < 1, ν > 0.

• Frank’s copulas :

Cθ(u, v) = −1
θ

ln
(

1 +
(exp(−θu)− 1)(exp(−θv)− 1)

exp(−θ)− 1

)
, θ 6= 0.

• Clayton’s copulas :

Cθ(u, v) = (u−θ + v−θ − 1)−1/θ, θ > 0.

• Gumbel’s copulas :

Cθ(u, v) = exp
(
−[ln(1/u)1/θ + ln(1/v)1/θ]θ

)
, θ ∈]0, 1].

Gaussian copulas are the most used in practice partly because their parameters can be esti-

mated very easily by empirical means. Moreover, they extend the simple multidimensional

gaussian framework naturally. Student copulas are of interest because they include the gaus-

sian copulas family as a limit case (when ν tends to the infinity). But contrary to the latter,

they exhibit dependence in the tails. As noticed in Hu [38], the three other families represent

three degree of dependence. Gumbel (resp. Clayton) copulas allow to modelize dependence

in the right (resp. left) tails. Finally, Frank’s copulas are symmetric.

We do the assumption the sequence of daily returns are independent marginally 18. By

using the same specifications as in section 6, we get tables 2, 3 and 4.

The conclusions are the same for the two test statistics 19. All these copulas are rejected

by the test at the 1% level. Nonetheless, the Student copula seems to be the “less bad”

one, especially for the couple (S&P500,Nikkei225). At the opposite, the gaussian copulas are

strongly rejected. When Clayton’s and Frank’s copulas performances are closed, Gumbel’s

copulas provide a worse fit: The strong dependence between large negative returns can be

explained partly by the former ones, contrary to the latter.
18even if it is a crude approximation: see ARCH, GARCH, stochastic volatility models...
19the critical values for T are 3.84 and 6.63 at the levels 5% and 1%. For S, they are respectively 103.0 and

113.5.
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copula family T S estimated parameters

Student 6.30 91.4 ν̂ = 15.6, ρ̂ = 0.13

Gaussian 38.3 430 ρ̂ = 0.12

Clayton 5.26 142.0 θ̂ = 0.16

Frank 5.00 142.4 θ̂ = 0.80

Gumbel 5.30 129.7 θ̂ = 0.93

Table 2: Goodness-of-Fit test for the copula of the joint returns (S&P500, Nikkei225).

copula family T S estimated parameters

Student 41.2 194 ν̂ = 4.15, ρ̂ = 0.68

Gaussian 73.0 965 ρ̂ = 0.67

Clayton 35.8 481 θ̂ = 1.30

Frank 27.0 974 θ̂ = 5.50

Gumbel 78.0 7518 θ̂ = 0.55

Table 3: Goodness-of-Fit test for the copula of the joint returns (Nasdaq, Dow Jones Ind).

copula family T S estimated parameters

Student 42.8 250 ν̂ = 3.73, ρ̂ = 0.67

Gaussian 69.3 1374 ρ̂ = 0.67

Clayton 27.5 604 θ̂ = 1.36

Frank 24.0 873 θ̂ = 5.25

Gumbel 67.8 6347 θ̂ = 0.56

Table 4: Goodness-of-Fit test for the copula of the joint returns (Dax30, Swiss MI).
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A Proof of theorem 1

We will prove that the behavior of τn(u) is the same as the behavior of

τ∗n(u) = n−1
n∑

i=1

Kh (u−Yi) ,

for every u. Indeed,

τn(u) = τ∗n(u) +
(−1)
nh

n∑
i=1

(dK)h(u−Yi).(Yni −Yi)

+
1

2nh2

n∑
i=1

(d2K)h(u−Yi).(Yni −Yi)(2) +
(−1)
6nh3

n∑
i=1

(d3K)h(u−Y∗
ni).(Yni −Yi)(3)

= τ∗n(u) +R1(u) +R2(u) +R3(u),

for some random vector Y∗
ni satisfying ‖Y∗

n,i −Yi‖ ≤ ‖Yn,i −Yi‖ a.e.

Let us first study R1(u). Its expectation is O(n−1h−1). Moreover

E[R2
1(u)] =

1
n2h2

∑
i,j

E [(dK)h(u−Yi).(Yni −Yi).(dK)h(u−Yj).(Ynj −Yj)]

=
1

n4h2

∑
i,j

∑
k,l

E [(dK)h(u−Yi).(1(Yk ≤ Yi)−Yi).(dK)h(u−Yj).(1(Yl ≤ Yj)−Yj)] .

We will denote by 1(y ≤ u) a d-dimensional vector whose k-th component is 1(yk ≤ uk). The

expectations of the summands are zero, except if there are some equalities involving k and l.

For instance, assume k = l 6= i 6= j. Let us note that

E [(dK)h(u−Yj).(1(Yi ≤ Yj)−Yj)|Yi = yi] =
∫

(dK)h(u− v).(1(yi ≤ v)− v)τ(v) dv

=
d∑

r=1

∫
(∂rK)h(u− v).(1(yi,r ≤ vr)− vr)τ(v) dv

=
d∑

r=1

∫
(∂rK)(v).(1(yi,r ≤ ur − hvr)− ur + hvr)τ(u− hv) dv

=
d∑

r=1

∫
(∂rK)(v).(1(vr ≤ (ur − yi,r)/h)− ur + hvr){τ(u) + hψ(u,v)} dv,

where ψ is a bounded compactly supported function, for n sufficiently large. Since we assume

K is the product of some univariate kernels Kr, r = 1, . . . , d, we get for every couple (i, j)

with i 6= j,

E [(dK)h(u−Yj).(1(Yi ≤ Yj)−Yj)|Yi = yi] = τ(u)
d∑

r=1

Kr

(
ur − yi,r

h

)
+O(h).φ(u),

(A.1)

where φ is bounded, compactly supported and independent from yi.
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Thus, the corresponding term in E[R2
1(u)] is

1
nh2

∫ {
τ(u)

∑
r

Kr

(
ur − yr

h

)
+O(h)φ(u)

}

·
{
τ(u)

∑
s

Ks

(
us − ys

h

)
+O(h)φ(u)

}
τ(y1)τ(y2) dy

=
1
nh2

∫
τ2(u)

∑
r 6=s

Kr

(
ur − yr

h

)
Ks

(
us − ys

h

)
dyr dys

+
∑
r

K2
r

(
ur − yr

h

)
dyr

}
+O(n−1h−1) = O(

1
nh

) = o(n−1h−d),

by some usual changes of variables with respects to yr and ys. The other equalities between

i, j, k and l provide a similar conclusion. Thus, the variance of R1(u) is o(n−1h−d), and

R1(u) = oP (1/
√
nhd).

The study of R2(u) is similar. We get by the same method E[R2(u)] = O(n−1h−2) and

E[R2
2(u)] = O(n−2h−4), hence R2(u) = oP (1/

√
nhd). Since,

‖Yn,i −Yi‖∞ = OP

((
ln2 n

n

)1/2
)
, (A.2)

we deduce directlyR3(u) = OP (h−3−dn−3/2. ln3/2
2 n), which is oP (n−1/2h−d/2) if nh3+d/2/ ln3/2

2 n

tends to the infinity when n→∞. Thus, under our assumptions,

τn(u) = τ∗n(u) + oP

(
1√
nhd

)
.

Moreover, Bosq and Lecoutre’s [5] theorem VIII.2 provides the asymptotic normality of

the joint vector (nhd)1/2((τ∗n − τ)(u1), . . . , (τ∗n − τ)(um)). This concludes the proof. 2.

B Proof of theorem 3

Clearly,

Jn =
∫

(τn −Kh ∗ τ̂)2(u)ω(u) du

=
∫

(τn − Eτn)2ω + 2
∫

(τn − Eτn)(u).(Eτn −Kh ∗ τ̂)(u)ω(u) du

+
∫

(Eτn −Kh ∗ τ̂)2ω

≡
∫

(τn − Eτn)2ω + 2JI + JII . (B.1)
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The main term of Jn will be

J∗n =
∫

(τn − Eτn)2ω =
1
n

∫ ( n∑
i=1

Kh(u−Yn,i)− EKh(u−Yni)

)2

ω(u) du

=
1
n2

n∑
i,j=1

∫
(Kh(u−Yn,i)− EKh(u−Yn,i)) . (Kh(u−Yn,j)− EKh(u−Yn,j))ω(u) du

Thus,

J∗n =
1
n2

n∑
i=1

∫
a2

n,iω +
2
n2

∑
i<j

∫
an,ian,jω ≡ J∗n,1 + J∗n,2 , (B.2)

where we have set

an,i(u) = Kh(u−Yn,i)− EKh(u−Yn,i).

Intuitively, an,i(u) is close to

ai(u) = Kh(u−Yi)− EKh(u−Yi).

For technical reasons, we will need to expand the difference between the two latter terms up

to the fourth order, viz

an,i(u)− ai(u) = bn,i(u) + cn,i(u) + dn,i(u) + en,i(u),

bn,i(u) =
(−1)
h

[(dK)h(u−Yi).(Yn,i −Yi)− E(dK)h(u−Yi).(Yn,i −Yi)] ,

cn,i(u) =
1

2h2

[
(d2K)h(u−Yi).(Yn,i −Yi)(2) − E(d2K)h(u−Yi).(Yn,i −Yi)(2)

]
,

dn,i(u) =
(−1)
6h3

[
(d3K)h(u−Yi).(Yn,i −Yi)(3) − E(d3K)h(u−Yi).(Yn,i −Yi)(3)

]
,

en,i(u) =
1

24h4

[
(d4K)h(u−Y∗

n,i).(Yn,i −Yi)(4) − E(d4K)h(u−Y∗
n,i).(Yn,i −Yi)(4)

]
,

for some Y∗
n,i that lies between Yi and Yn,i a.e. Most of the sums involving the previous

terms will be negligible with respects to 1/(nhd/2).

B.1 Study of J∗n,2

Now

J∗n,2 =
2
n2

∑
i<j

∫
[ai + bn,i + cn,i + dn,i + en,i] . [aj + bn,j + cn,j + dn,j + en,j ]ω

=
2
n2

∑
i<j

∫
aiajω +

2
n2

∑
i<j

∫
(aibn,j + ajbn,i)ω + . . .

From Hall (1984), it is known that

nhd/2

2
· 1
n2

∑
i<j

∫
aiajω

law−→ 1
2
√

2
N (0, σ2), (B.3)
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σ2 =
∫
τ2ω ·

∫ [∫
K(u)K(u + v) du

]2
dv.

Therefore, the main term of J∗n,2 seems to be of order O(n−1h−d/2). We will check it by

studying the terms of the expansion of J∗n,2 successively.

B.1.1 Study of Tα ≡ 2n−2∑
i<j

∫
aibn,jω

Note that the expectation of Tα is not zero, because some Yi appears inside bn,j , for every j.

For convenience, set

bn,j(u) =
(−1)
nh

n∑
k=1

bn,j,k(u), with

bn,j,k(u) = (dK)h(u−Yj).(1(Yk ≤ Yj)−Yj)− E [(dK)h(u−Yj).(1(Yk ≤ Yj)−Yj)] .

Moreover,

Tα =
( −2
n3h

)∑
i<j

n∑
k=1

∫
aibn,j,kω

=
( −2
n3h

)∑
i<j

n∑
k 6=i,k 6=j

∫
aibn,j,kω +

∑
i<j

∫
aibn,j,iω +

∑
i<j

∫
aibn,j,jω


≡ T (1)

α + T (2)
α + T (3)

α .

First, let us study T (3)
α . Its expectation is zero. Its variance is

E[(T (3)
α )2] =

4
n6h2

∑
i1<j1

∑
i2<j2

∫
E[ai1(u1)bn,j1,j1(u1)ai2(u2)bn,j2,j2(u2)]ω(u1)ω(u2) du1 du2

=
4

n6h2

 ∑
i1<j1,i2=i1,j2=j1

+
∑

i1<j1,i2=j1,j2=i1

 ≡ V
(3)
α,1 + V

(3)
α,2 .

The first of these terms is

V
(3)
α,1 =

4
n6h2

∑
i<j

∫ {
Kh(u1 − yi)−

∫
K(v)τ(u1 − hv) dv

}
.

{
Kh(u2 − yi)−

∫
K(v)τ(u2 − hv) dv

}
· {(dK)h(u1 − yj).(1− yj)− E[(dK)h(u1 −Y).(1−Y)]} · {(dK)h(u2 − yj).(1− yj)

− E[(dK)h(u2 −Y).(1−Y)]} τ(yi)τ(yj)ω(u1)ω(u2) du1 du2 dyi dyj .

The “hardest” term among the latter ones is

4
n6h2

∑
i<j

∫
Kh(u1 − yi)Kh(u2 − yi)(dK)h(u1 − yj).(1− yj).(dK)h(u2 − yj).(1− yj)

· τ(yi)τ(yj)ω(u1)ω(u2) dyi yj du1 du2

=
4

n6h2+d

∑
i<j

∫
K(ỹi)K(ũ2 + ỹi)(dK)(ỹj).(1− u1 + hỹj)

· (dK)(ũ2 + ỹj).(1− u1 + hỹj)τ(u1 − hỹi)τ(u1 − hỹj)ω(u1)ω(u1 + hũ2) dỹi dỹj du1 dũ2.
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Since K is compactly supported, clearly, we can assume every variables belong to some

compact real subset. Thus, the latter term is of order n−4h−2−d. It is o(n−2h−d) since nh

tends to the infinity when n is large. The seven other terms of V (3)
α,1 can be dealt similarly.

Actually, they are even of a weaker order (we win an extra factor hd). Moreover,

V
(3)
α,2 =

4
n6h2

∑
i<j

∫ {
Kh(u1 − yi)−

∫
K(v)τ(u1 − hv) dv

}

·
{
Kh(u2 − yj)−

∫
K(v)τ(u2 − hv) dv

}
· {(dK)h(u1 − yi).(1− yi)− E[(dK)h(u1 −Y).(1−Y)]} · {(dK)h(u2 − yj).(1− yj)

− E[(dK)h(u2 −Y).(1−Y)]} τ(yi)τ(yj)ω(u1)ω(u2) du1 du2 dyi dyj .

Working exactly like V (3)
α,1 , we can show V

(3)
α,2 = O(n−4h−2−d). Thus, we have proved that

T (3)
α = oP

(
1

nhd/2

)
.

Second, let us study T (2)
α . Recall that

T (2)
α =

( −2
n3h

)∑
i<j

∫
ai(u)(dK)h(u−Yj).(1(Yi ≤ Yj)−Yj)ω(u) du.

The expectation of this term is not zero. By applying equation (A.1), we obtain

E[T (2)
α ] =

(−1)
nh

(1− 1
n

)
∫
E
[
(Kh(u−Y1)− E[Kh(u−Y)])

·
(
τ(u)

d∑
r=1

Kr

(
ur − Y1,r

h

)
+O(h)φ(u)

)]
ω(u) du

=
(−1)
nh

(1− 1
n

)
d∑

r=1

{∫
(Kh(u− y)− E[Kh(u−Y)])Kr

(
ur − yr

h

)

· τ(y)τ(u)ω(u) du dy +O(h)} =
(−1)
nh

d∑
r=1

∫
K2

r .

∫
τ2ω +O(n−1).

Note we have used the fact that the density of Yr is uniform on [0, 1].

The order of the expectation of T (2)
α is then (nh)−1. Unfortunately, it is not o(1/nhd/2)

when d = 2. Nonetheless, its variance will be small enough so that we can consider this term
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is reduced to its expectation. Indeed,

V ar(T (2)
α ) =

4
n6h2

∑
i1<j1,i2<j2

∫
E
[
ai1(u1).(dK)h(u1 −Yj1).(1(Yi1 ≤ Yj1)−Yj1)

· ai2(u2).(dK)h(u2 −Yj2).(1(Yi2 ≤ Yj2)−Yj2)

− E[ai1(u1)bn,j1,i1(u1)].E[ai2(u2)bn,j2,i2(u2)]
]
ω(u1)ω(u2) du1 du2

=
4

n6h2

 ∑
i1<j1,i2<j2,i1=i2

+
∑

i1<j1,i2<j2,i1=j2

+
∑

i1<j1,i2<j2,j1=i2

+
∑

i1<j1,i2<j2,j1=j2


≡ V

(2)
α,1 + V

(2)
α,2 + V

(2)
α,3 + V

(2)
α,4 .

Let us study the first of the previous terms.

V
(2)
α,1 =

4
n6h2

∑
i1<j1,i1<j2

∫ {
Kh(u1 − yi1)−

∫
K(t)τ(u1 − ht) dt

}

·
{
Kh(u2 − yi1)−

∫
K(t)τ(u2 − ht) dt

}
. {(dK)(ỹj1).(1(yi1 ≤ u1 − hỹj1)− (u1 − hỹj1))}

· {(dK)(ỹj2).(1(yi1 ≤ u2 − hỹj2)− (u2 − hỹj2))} τ(yi1)τ(u1 − hỹj1)τ(u2 − hỹj2)

· ω(u1)ω(u2) du1 du2 dỹj1 dỹj2 +O

(
1

n6h2
· n

2

hd

)
.

The remainder term corresponds to the case i1 = i2, j1 = j2. The main previous term of V (2)
α,1

can be expressed as a sum of four terms. The first one involves the factorKh(u1−yi1).Kh(u2−
yi1). The second (resp. the third) one involves the factor Kh(u1 − yi1) (resp. Kh(u2 − yi1))

only. The last one has no such factor (viz no more denominators h−d). If necessary, we

can set one or two changes of variables among ỹi1 = (u1 − yi1)/h, ỹi1 = (u2 − yi1)/h or

ũ2 = (u2 − u1)/h. It allows to clear all the factors h−d. Thus we get easily,

V
(2)
α,1 = O

(
1

n6h2
· n3

)
+O

(
1

n4h2+d

)
= o

(
1

n2hd

)
, (B.4)

since nh tends to the infinity. The three other terms V (2)
α,l , l = 2, 3, 4 can be dealt similarly,

because there exist always four free variables (u1,u2 and three ones among i1, i2, j1, j2) that

can be used for some change of variables. Like previously, all the factors h−d disappear. To

conclude, V (2)
α = O(1/(n3h2) + 1/(n4h2+d)), and

T (2)
α = ET (2)

α + oP

(
1

nhd/2

)
=

(−1)
nh

∫
τ2ω.

d∑
r=1

∫
K2

r + oP

(
1

nhd/2

)
.

Now, let us deal with T (1)
α . Recall that

T (1)
α =

(−2)
n3h

∑
i<j

∑
k,k 6=i,k 6=j

∫
aibnjkω.
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Clearly, T (1)
α is centered. Moreover, its variance is

E[
(
T (1)

α

)2
] =

4
n6h2

∑
i1<j1

∑
i2<j2

∑
k1 6=i1,j1

∑
k2 6=i2,j2

E

∫
(ai1bn,j1k1) (u1) · (ai2bn,j2k2) (u2)ω(u1)ω(u2) du1 du2.

A lot of the latter terms are zero. The only nonzero terms appear in the following cases :

• k1 = i2 and k2 = i1,

• k1 = k2 and i1 = i2,

• k1 = i2, k2 = j1 and i1 = j2,

• k1 = j2, k2 = i1 and i2 = j1,

• k1 = j2, k2 = j1 and i1 = i2,

• k1 = k2, i1 = j2 and i2 = j1.

Thus, the variance of T (1)
α is the sum of six terms, denoted by V (1)

α,l , l = 1, . . . , 6. Assuming

that there are no other equalities except k1 = i2 and k2 = i1, the first variance term is

V
(1)
α,1 =

4
n4h2

∑
i1,i2,i1 6=i2

∫
{
Kh(u1 − yi1)−

∫
K(t)τ(u1 − ht) dt

}
.

{
Kh(u2 − yi2)−

∫
K(t)τ(u2 − ht) dt

}

·
{
τ(u1)

d∑
r=1

Kr

(
u1r − yi2r

h

)
+O(h)φ(u1)

}
·
{
τ(u2)

d∑
s=1

Kr

(
u2s − yi1s

h

)
+O(h)φ(u2)

}
· τ(yi2)τ(yi1)ω(u1)ω(u2) dyi1 dyi2 du1 du2.

This sum can be split into 16 other terms. The main one is

4
n4h2

∑
r,s

∑
i1,i2

∫
Kh(u1 − yi1)Kh(u2 − yi2)τ(u1)Kr

(
u1r − yi2r

h

)

· τ(u2)Kr

(
u2s − yi1s

h

)
τ(yi2)τ(yi1)ω(u1)ω(u2) dyi1 dyi2 du1 du2

=
4

n4h2

∑
r,s

∑
i1,i2

∫
K(ỹi1)K(ỹi2)τ(u1)Kr

(
u1r − u2r + hỹi2r

h

)

· τ(u2)Kr

(
u2s − u1s + hỹi1s

h

)
τ(u2 − hỹi2)τ(u1 − hỹi1)ω(u1)ω(u2) dỹi1 dỹi2 du1 du2

If r 6= s, set the change of variables ũ1r = (u1r − u2r)/h and ũ1s = (u1s − u2s)/h to get an

extra factor h2. If r = s, we obtain only one factor h. Thus, the previous variance term is

O(n−4h−2.n2.h) = O(n−2h−1). This is o(n−2h−d).
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Imagine we have some other equalities between the indices i1, i2, j1, j2, k1 and k2 in V (1)
α .

For instance j1 = j2. This would not be a problem because we gain a factor n and we can

always remove the annoying factor h−d by some change of variables with respects to u1, u2

and the variables y. Thus, we get the order O(n−6h−2.n3) = o(n−2h−d).

The 15 other terms that are coming from the expansion of V (1)
α,1 can be dealt similarly.

Thus, V (1)
α,1 = o(n−2h−d).

Another critical term should be

V
(1)
α,2 =

4
n6h2

∑
i<j1

∑
i<j2

∑
k,k 6=i,j1,j2

∫
E [(aibn,j1,k)(u1)(aibn,j2,k)(u2)]ω(u1)ω(u2) du1 du2.

Since k is different from all other indices, this equals

4
n6h2

∑
i<j1

∑
i<j2

∑
k

∫
{
Kh(u1 − yi)−

∫
K(t)τ(u1 − ht) dt

}
.

{
Kh(u2 − yi)−

∫
K(t)τ(u2 − ht) dt

}
· (dK)h(u1 − yj1).(1(yk ≤ yj1)− yj1) · (dK)h(u2 − yj2).(1(yk ≤ yj2)− yj2)

· τ(yi)τ(yj2)τ(yj1)τ(yk)ω(u1)ω(u2) dyi dyj1 dyj2 dyk du1 du2

=
4

n4h2

∑
i

∑
k

∫ {
K(ỹi)− hd

∫
K(t)τ(u1 − ht) dt

}
.

{
Kh(u2 − u1 + hỹi)−

∫
K(t)τ(u2 − ht) dt

}

·
{
τ(u1)

d∑
r=1

Kr

(
u1r − yk,r

h

)
+O(h)φ(u1)

}
·
{
τ(u2)

d∑
s=1

Ks

(
u2s − yk,s

h

)
+O(h)φ(u2)

}
· τ(u1 − hỹi)τ(yk)ω(u1)ω(u2) dỹi dyk du1 du2.

We have assumed there are no additional equalities between i, j1, j2. By setting hũ2 = u2−u1,

we remove the factor h−d. Moreover, by setting hũ1r = u1r − ykr, we get an extra factor h.

Thus, the term if of order O(n−4h−2.n2.h = o(n−2h−d). When there are some other equalities

between the other indices i, j1 and j2, we gain a factor n even if we lose eventually a factor hd.

In every cases, the order of these terms is lower than n−2h−d. Therefore, V (1)
α,2 = o(n−2h−d).

All the other terms V (1)
α,l , l = 3, . . . , 6 are simpler. Indeed, with respects to V (1)

α,1 , there is

an additional equality between the indices. At the opposite, it should be harder to remove

all the four terms h−d. Actually, it can be done at least three times over four, because there

are always two free variable y (at least), and we have u1 or u2 at our disposal too. Thus, all

these terms are O(n−6h−2.n3h−d) = o(n−2h−d) since nh2 tends to the infinity.
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Therefore, the variance of T (1)
α is negligible with respects to n−2h−d and T (1)

α = oP (1/(nhd/2)).

To conclude,

Tα =
(−1)
nh

∫
τ2ω.

d∑
r=1

∫
K2

r + oP

(
1

nhd/2

)
. (B.5)

B.1.2 Study of Tβ = 2n−2∑
i<j bn,ibn,jω

Note that

Tβ =
2

n4h2

∑
i<j

∑
k,k′

∫
{(dK)h(u−Yi).(1(Yk ≤ Yi)−Yi)− E[(dK)h(u−Yi).(1(Yk ≤ Yi)−Yi)]}

· {(dK)h(u−Yj).(1(Yk′ ≤ Yj)−Yj)− E[(dK)h(u−Yj).(1(Yk′ ≤ Yj)−Yj)]}ω(u) du.

The latter term needs to be considered with respects to the potential number of equalities

between the indices i, j, k, k′.

No equalities between i, j, k, k′ : T (1)
β

Thus, the expectation of the corresponding term is zero. Moreover, its variance is

4
n8h4

∑
i1<j1

∑
i2<j2

∑
k1 6=k′1 6=i1,j1

∑
k2 6=k′2 6=i2,j2

E

∫
(dK)h(u1 −Yi1).(1(Yk1 ≤ Yi1)−Yi1)

· (dK)h(u1 −Yj1).(1(Yk′1
≤ Yj1)−Yj1).(dK)h(u2 −Yi2).(1(Yk2 ≤ Yi2)−Yi2)

· (dK)h(u2 −Yj2).(1(Yk′2
≤ Yj2)−Yj2)ω(u1)ω(u2) du1 du2.

The expectations are zero, except if there are some equalities between our eight indices. More

precisely, the equalities have to concern all the indices k1, k
′
1, k2, k

′
2, otherwise the correspond-

ing term is zero. This provides the following cases :

• k1 = k2 and k′1 = k′2,

• k1 = k′2 and k′1 = k2,

• k1 = i2, k2 = i1, k′1 = k′2, or their variations,

• k1 = i2, k′1 = j2, k2 = i1, k′2 = j1, or their variations.

The corresponding variances are called V
(1)
β,j , j = 1, . . . , 4. Let us deal with the first configu-

26



ration. It provides the “variance-type” term

4
n8h4

∑
i1<j1

∑
i2<j2

∑
k 6=k′

E

∫
(dK)h(u1 −Yi1).(1(Yk ≤ Yi1)−Yi1)(dK)h(u1 −Yj1)

· (1(Yk′ ≤ Yj1)−Yj1)(dK)h(u2 −Yi2).(1(Yk ≤ Yi2)−Yi2)

(dK)h(u2 −Yj2).(1(Yk′ ≤ Yj2)−Yj2)ω(u1)ω(u2) du1 du2

=
4

n8h4

∑
i1<j1

∑
i2<j2

∑
k 6=k′

E

∫ {
τ(u1)

d∑
r=1

Kr

(
u1r − Ykr

h

)
+O(h)φ(u1)

}

·
{
τ(u1)

d∑
r′=1

Kr′

(
u1r′ − Yk′r′

h

)
+O(h)φ(u1)

}
·
{
τ(u2)

d∑
s=1

Ks

(
u2s − Yks

h

)
+O(h)φ(u2)

}

·
{
τ(u2)

d∑
s′=1

Ks′

(
u1s′ − Yk′s′

h

)
+O(h)φ(u2)

}
ω(u1)ω(u2) du1 du2.

The main member of the previous expansion is

4
n8h4

∑
i1<j1

∑
i2<j2

∑
k 6=k′

∑
r,r′,s,s′

E

∫
τ2(u1)Kr

(
u1r − Ykr

h

)
Kr′

(
u1r′ − Yk′r′

h

)

· τ2(u2)Ks

(
u2s − Yks

h

)
Ks′

(
u2s′ − Yk′s′

h

)
ω(u1)ω(u2) du1 du2

The “worse” situation occurs when r = s and r′ = s′. In this case, we get

4
n8h4

∑
i1<j1

∑
i2<j2

∑
k 6=k′

∫
τ2(u1)Kr

(
u1r − ykr

h

)
Kr′

(
u1r′ − yk′r′

h

)
τ2(u2)

· Kr

(
u2r − ykr

h

)
Kr′

(
u2r′ − yk′r′

h

)
τr(ykr)τr′(yk′r′)ω(u1)ω(u2) du1 du2 dykr dyk′r′

=
4

n8h2

∑
i1<j1

∑
i2<j2

∑
k 6=k′

∫
τ2(u1)Kr(ỹkr)Kr′(ỹk′r′)τ2(u2)Kr

(
u2r − u1r + hỹkr

h

)

· Ks′

(
u2r′ − u1r′ + hỹk′r′

h

)
τr(u1r − hỹkr)τr′(u1r′ − hỹk′r′)ω(u1)ω(u2) du1 du2 dỹkr dỹk′r′ .

By setting hũ2r = u2r − u1r, we get an extra factor h. The previous variance term is then

O(n−8h−1.n6) = o(n2h−d). Thus, V (1)
β,1 = o(n−2h−d).

The variance term V
(1)
β,2 corresponding to the case k1 = k′2 and k′1 = k2 can be dealt exactly

as V (1)
β,1 . The third one, V (1)

β,3 , is

4
n8h4

∑
i1<j1

∑
i2<j2

∑
k

E

∫
(dK)h(u1 −Yi1).(1(Yi2 ≤ Yi1)−Yi1)(dK)h(u1 −Yj1)

· (1(Yk ≤ Yj1)−Yj1)(dK)h(u2 −Yi2).(1(Yi1 ≤ Yi2)−Yi2)

· (dK)h(u2 −Yj2).(1(Yk ≤ Yj2)−Yj2)ω(u1)ω(u2) du1 du2.

It can be bounded easily : V (1)
β,3 = O(1/(n8h4) · n5) = o(1/(n2hd)), since nh2 tends to the

infinity when n is large.
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V
(1)
β,4 and the other variance terms that are obtained by adding some equalities between

the indices can be dealt similarly. All of them provide negligible terms. To conclude,

T
(1)
β = oP

(
1

nhd/2

)
.

Only the equality k = k′ : T (2)
β

We get

T
(2)
β =

2
n4h2

∑
i<j

∑
k 6=i,j

∫
(dK)h(u−Yi).(1(Yk ≤ Yi)−Yi)(dK)h(u−Yj).(1(Yk ≤ Yj)−Yj)ω(u) du.

Its expectation is nonzero. More precisely,

ET
(2)
β =

2
n4h2

∑
i<j

∑
k 6=i,j

E

∫ {
τ(u)

d∑
r=1

Kr

(
ur − Ykr

h

)
+O(h)φ(u)

}

·
{
τ(u)

d∑
s=1

Ks

(
us − Yks

h

)
+O(h)φ(u)

}
ω(u) du

=
2

n4h2

∑
r 6=s

∑
i<j

∑
k 6=i,j

+
∑
r=s

∑
i<j

∑
k 6=i,j

+O(n−2)

≡ E
(2)
β,1 + E

(2)
β,2 +O(n−2).

By setting hỹkr = ur − ykr and hỹks = us − yks, we get easily

E
(2)
β,1 = O

(
1

n4h2
· n3 · h2

)
= O(n−2).

Concerning E(2)
β,1, one change of variables only is possible. It provides

E
(2)
β,2 =

2
n4h2

∑
i<j

∑
k 6=i,j

d∑
r=1

∫
τ2(u)K2

r

(
ur − ykr

h

)
ω(u)1(ykr ∈ [0, 1]) du dykr

=
2
n4h

· n(n− 1)
2

· (n− 2)

{
d∑

r=1

∫
K2

r ·
∫
τ2ω

}

=
1
nh

∑
r

∫
K2

r

∫
τ2ω + o(

1
nh

),

for n sufficiently large. Therefore, the expectation of T (2)
β is not o(n−1h−d/2) (in the case

d = 2). Let us deal now with its variance. To lighten the notations, we set

e0(u) = E [(dK)h(u−Y1).(1(Y3 ≤ Y1)−Y1).(dK)h(u−Y2).(1(Y3 ≤ Y2)−Y2)] .
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Therefore,

V ar(T (2)
β ) =

4
n8h4

∑
i1<j1,i2<j2

∑
k1 6=i1,j1

∑
k2 6=i2,j2

E

∫
{(dK)h(u1 −Yi1).(1(Yk1 ≤ Yi1)−Yi1)

· (dK)h(u1 −Yj1).(1(Yk1 ≤ Yj1)−Yj1)− e0(u1)} . {(dK)h(u2 −Yi2).(1(Yk2 ≤ Yi2)−Yi2)

· (dK)h(u2 −Yj2).(1(Yk2 ≤ Yj2)−Yj2)− e0(u2)})ω(u1)ω(u2) du1 du2.

When there are no equalities between the indices i1, j1, k1, i2, j2, k2, the corresponding expec-

tation is zero. At the opposite, there could be one, two or three equalities between them. In

every case, it is always possible to make some changes of variables with respects to yi1 and

yj1 . Moreover, it is possible to set hũ2 = u2 − u1, as previously. Thus, it is easy to verify

that

V ar(T (2)
β ) = O

(
1

n8h4
· (n5 + n4h−d)

)
= o(n−2h−d).

Thus,

T
(2)
β =

1
nh

∑
r

∫
K2

r

∫
τ2ω + oP (n−1h−d/2).

Only the equality k = i or j (or k′ = i or j) : T (3)
β

The expectation is zero and the variance can be dealt exactly as in the latter case.

Two equalities, or more, between the indices : T (4)
β

To fix the ideas, imagine there are two equalities between our four indices. It means i = k

and j = k′, or the reverse. It is obvious to bound the expectation of T (4)
β by O(n−4h−2.n2) =

o(n−1h−d/2). Moreover, the variance is clearly O(n−8h−4.n4.h−d), by the same calculations

as previously. Thus, T (4)
β is negligible with respects to n−1h−d/2, in probability.

To conclude,

Tβ =
1
nh

∑
r

∫
K2

r

∫
τ2ω + oP (n−1h−d/2). (B.6)

B.1.3 Study of 2n−2∑
i<j aicn,jω and 2n−2∑

i<j aidn,jω

To deal with these two terms simultaneously, denote

Tγ,m =
2

n2+mhm

∑
i<j

∑
k1,...,km

∫
{Kh(u−Yi)− EKh(u−Yi)}

· {(dmK)h(u−Yj).(1(Yk1 ≤ Yj)−Yj) . . . (1(Ykm ≤ Yj)−Yj)

− E[(dmK)h(u−Yj).(1(Yk1 ≤ Yj)−Yj) . . . (1(Ykm ≤ Yj)]}ω(u) du,
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for m = 2, 3. All the summands are centered, except when there are some equalities involving

all the indices k1, . . . , km and i (at least).

By splitting Tγ,m, we get several terms. If all the previous indices i, j, k1, . . . , km are

different from each other, the expectation is zero and the variance is

V (1)
γ,m =

4
n4+2mh2m

∑
i1<j1

∑
i2<j2

∑
k1,...,km

∑
k′1,...,k′m

E

∫
{Kh(u1 −Yi1)− EKh(u1 −Yi1)} · {Kh(u2 −Yi2 − EKh(u2 −Yi2)}

· {(dmK)h(u1 −Yj1).(1(Yk1 ≤ Yj1)−Yj1) . . . (1(Ykm ≤ Yj1)−Yj1)}

·
{
(dmK)h(u2 −Yj2).(1(Yk′1

≤ Yj2)−Yj2) . . . (1(Yk′m ≤ Yj2)−Yj2)
}
ω(u1)ω(u2) du1 du2.

The corresponding terms are zero except when there are some equalities involving all the

indices k1, . . . , km, k
′
1, . . . , k

′
m and i1, i2. There are at least m+ 1 equalities. Moreover, there

are always three “free” random variables at least, viz three integrations with respects to

some y are available. It is possible to gain another factor hd by the change of variables

hũ2 = u2 − u1. Thus, in every case,

V (1)
γ,m = O

(
1

n4+2mh2m
· n4+2m−(m+1)

)
= O

(
1

n1+mh2m

)
.

This quantity is o(n−2h−d) when m = 2, 3 since nh2 tends to the infinity when n→∞.

Imagine now there are some identities between the indices i, j, k1, . . . , km. The expectation

of the corresponding term is zero, except if these equalities involve all i, k1, . . . , km. When

m = 2 (resp. m = 3), two equalities at least are necessary. This implies the expectation is

O(n−2−mh−mnm) = O(n−2h−m) = o(n−1h−d/2). Moreover, its variance can be dealt exactly

like V (1)
γ,m. Thus, we have proved

Tγ,m = oP

(
1

nhd/2

)
,

when m = 2, 3.

B.1.4 Study of 2n−2∑
i<j cn,icn,jω, 2n−2∑

i<j cn,ibn,jω and the other terms of the

same type.

To deal with these terms simultaneously, denote

Tδ,m,p =
2

n2+m+phm+p

∑
i<j

∑
k1,...,km

∑
l1,...,lp

∫
{(dmK)h(u−Yi).(1(Yk1 ≤ Yi)−Yi)

. . . (1(Ykm ≤ Yi)−Yi)− E[(dmK)h(u−Yi).(1(Yk1 ≤ Yi)−Yi) . . . (1(Ykm ≤ Yj)]}

·
{
(dpK)h(u−Yj).(1(Yl1 ≤ Yj)−Yj) . . . (1(Ylp ≤ Yj)−Yj)

− E[(dpK)h(u−Yj).(1(Yl1 ≤ Yj)−Yj) . . . (1(Ylp ≤ Yj)]
}
ω(u) du,
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for m and l = 1, 2, 3, m+ p ≥ 3. All the summands are centered, except when there are some

equalities involving all the indices k1, . . . , km and l1, . . . , lp (at least) .

Imagine we are dealing with all the terms of the previous sum corresponding to different

indices. Thus the expectation is zero and the variance is a sum over 4 + 2(m + p) indices

(denoted by i1, i2, j1, j2, k1, k
′
1, . . . , km, k

′
m, l1, l′1, . . . , lp, l

′
p with obvious notations). Nonzero

terms occurs when all the k, k′, l and l′ indices are matched. At least, this provides m + p

equalities. Moreover, there are always three opportunities to make some usual changes of

variables and to remove the factors hd. When this factor appears, it means we have an

additional equality involving i or j indices. Thus, we win an extra factor n. Therefore, the

variance is

O

(
1

n4+2m+2phm+p
· (n4+m+p + n3+m+ph−d)

)
.

In every case, this is o(n−2h−d).

Now, imagine there are some equalities between i, j, k1, . . . , km, l1, . . . , lp. The variance of

such a term can be dealt as previously. It is sufficient to verify that its expectation is negligible.

This expectation is a sum of terms that are nonzero only if there are some equalities involving

k1, . . . , km, l1, . . . , lp. If m + p is even, there are at least (m + p)/2 equalities. If m + p is

odd, there are at least [(m + p)/2] + 1 equalities. In every case, the factors hd disappear

by some changes of variables with respects to yi and yj . To summarize, this expectation is

O(n−(m+p)/2h−m−p) (resp. O(n−[(m+p)/2]−1h−m−p)) if m+p is even (resp. odd). These terms

are o(n−1h−d/2) if nh3 →∞.

Thus

Tδ,m,p = oP

(
1

nhd/2

)
.

B.1.5 Study of the remainder terms

These terms are like 2n−2∑
i<j aien,jω. Actually, every term that involves en,j is negligible.

For instance

∣∣∣∣∣∣2n−2
∑
i<j

aien,jω

∣∣∣∣∣∣ ≤ Cst

n2h4
· n

2

hd
· sup

j
‖Yn,j −Yj‖4

∞ = OP

(
ln2

2 n

n2h4+d

)
.

This term is oP (n−1h−d/2) under (B).
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Thus, we have got

J∗n,2 =
√

2
nhd/2

Nn + 2Tα + Tβ + oP

(
1

nhd/2

)

=
√

2
nhd/2

Nn +
(−1)
nh

∫
τ2ω.

d∑
r=1

∫
K2

r + oP

(
1

nhd/2

)
(B.7)

where Nn tends in law towards a gaussian r.v. N (0, σ2).

B.2 Study of J∗n,1

With the previous notations

J∗n,1 =
1
n2

∑
i

∫
a2

n,iω =
1
n2

∑
i

∫
[ai + bn,i + c∗n,i]

2ω

=
1
n2

∑
i

∫ [
a2

i + b2n,i + (c∗n,i)
2 + 2aibn,i + 2bn,ic

∗
n,i + 2aic

∗
n,i

]
ω,

where the expansion of K has been stopped at the second order. We denote

c∗n,i(u) =
1

2h2

{
(d2K)h(u−Y∗

n,i).(Yn,i −Yi)(2) − E[(d2K)h(u−Y∗
n,i).(Yn,i −Yi)(2)]

}
= OP

(
1

hd+2
sup

i
‖Yn,i −Yi‖2

)
= OP

(
ln2 n

nhd+2

)
.

Therefore, it is easy to bound
∫
aic

∗
n,iω,

∫
bn,ic

∗
n,iω, and

∫
(c∗n,i)

2ω. All the corresponding terms

in J∗n,1 are negligible if

ln2 n

n2hd+2
+

ln3/2
2 n

n5/2hd+3
+

ln2
2 n

n3hd+4
<<

1
nhd/2

.

This is satisfied under condition (B). The main term of J∗n,1 is provided by
∫
a2

iω. Note

that

E
1
n2

∑
i

∫
a2

iω =
1
nhd

∫
K2(t)(τω)(u− ht) dt +O(n−1)

=
1
nhd

∫
K2

∫
τω +O

(
h2

nhd

)
,

since K is even. Moreover, the variance is

V ≡ 1
n4
E
∑
i,j

∫ [{
Kh(u1 −Yi)−

∫
K(t)τ(u1 − ht) dt

}2

− E

{
Kh(u1 −Yi)−

∫
K(t)τ(u1 − ht) dt

}2
]
·
[{
Kh(u2 −Yj)−

∫
K(t)τ(u2 − ht) dt

}2

− E

{
Kh(u2 −Yj)−

∫
K(t)τ(u2 − ht) dt

}2
]
ω(u1)ω(u2) du1 du2.
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The non zero terms are obtained when i = j. By the change of variables hỹi = u1 − yi and

hũ2 = u2 − u1, it is easy to verify that V = O(n−3 · h−2d). Thus, since nhd →∞, we get

1
n2

∑
i

∫
a2

iω =
1
nhd

∫
K2(t)(τω)(u− ht) dt + oP (n−1h−d/2).

Let us consider now T ≡ n−2∑
i

∫
aibn,iω. Its expectation is

E[n−2
∑

i

∫
aibn,iω] = n−1

∫
E[a1bn,1]ω

=
(−1)
n2h

∫ {
Kh(u− y)−

∫
K(t)τ(u− ht) dt

}
· {(dK)h(u− y).(1− y)− E[(dK)h(u−Y).(1−Y)]} τ(y)ω(u) du dy

=
(−1)
n2h1+d

∫ {
K(v)−

∫
K(t)τ(u− ht) dt

}
.(dK)(v).(1− u− hv)

· τ(u− hv)ω(u) dv du +O(n−2h−1).

Thus, this expectation is o(n−1h−d/2). Moreover, its variance is

V ar(T ) =
1
n4
E
∑
i,j

∫
ai(u1)aj(u2)bn,i(u1)bn,j(u2)ω(u1)ω(u2) du1 du2 − E[T ]2

=
1
n3
E

∫
a1(u1)a1(u2)bn,1(u1)bn,1(u2)ω(u1)ω(u2) du1 du2 − E[T ]2

=
1

n3h2
E

∫
a1(u1)a1(u2)(dK)h(u1 −Y1).(Yn,1 −Y1)

· (dK)h(u2 −Y1).(Yn,1 −Y1)ω(u1)ω(u2) du1 du2 +O(n−4h−2−2d)

We get immediately, using an a.e. upper bound for the empirical process and three changes

of variables,

V ar(T ) ≤ 1
n3h2

E

∫
|a1(u1)a1(u2)|.‖(dK)h‖2

∞(u1 −Y1).‖(dK)h‖∞(u2 −Y1)

· ‖Yn,1 −Y1‖∞ω(u1)ω(u2) du1 du2 +O(n−4h−2−2d)

≤ Cst

n3h2
· 1
hd
· ln2 n

n

The latter upper bound is o(n−2h−d). Thus, we have proved T = oP (n−1h−d/2).

It remains to deal with n−2∑
i

∫
b2n,iω. By a change of variable with respects to u, we get

directly the upper bound

n−2
∑

i

∫
b2n,iω = OP

(
1
nh2

· 1
hd
· ln2 n

n

)
= oP (n−1h−d/2),

if nh2+d/2/ ln2 n→∞. The latter condition could be relaxed by a more cautious analysis of

the latter term, as done previously. It is useless, facing the set of technical assumptions we

have already done.
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To conclude,

J∗n,1 =
1
nhd

∫
K2(t)(τω)(u− ht) dt + oP

(
1

nhd/2

)
. (B.8)

B.3 Study of JI

Recall that

JI =
∫

(τn − Eτn).(Eτn −Kh ∗ τ̂)ω, and

τn(u)− Eτn(u) = n−1
∑

i

∫
[ai(u) + b∗n,i(u)]ω(u) du, with

b∗n,i(u) =
(−1)
nh

n∑
i=1

{
(dK)h(u−Y∗

n,i).(Yn,i −Yi)− E[(dK)h(u−Y∗
n,i).(Yn,i −Yi)]

}
,

for some random variable Y∗
n,i, ‖Y∗

n,i −Yi‖ ≤ ‖Yn,i −Yi‖ a.e. Thus,

JI =
∫ { 1

n

∑
i

[ai(u) + b∗n,i(u)]

}
.
{
Eβ∗n,i(u)−Kh ∗ (τ̂ − τ)(u)

}
ω(u) du

=
1
n

∑
i

∫
ai(u)Kh ∗ (τ − τ̂)(u)ω(u) du +

1
n

∑
i

∫
ai(u)Eβ∗n,i(u)ω(u) du

+
1
n

∑
i

∫
b∗n,i(u)Kh ∗ (τ − τ̂)(u)ω(u) du +

1
n

∑
i

∫
b∗n,i(u)Eβ∗n,i(u)ω(u) du

≡ J
(0)
I + J

(1)
I + J

(2)
I + J

(3)
I ,

by denoting

β∗n,i(u) =
(−1)
h

(dK)h(u−Y∗
n,i).(Yn,i −Yi).

Clearly

τ̂(u)− τ(u) = ∂θτ(u, θ0).(θ̂ − θ0) + 2−1∂2
θτ(u, θ̃).(θ̂ − θ0)(2), (B.9)

for some θ̃, ‖θ̃ − θ0‖ ≤ ‖θ̂ − θ0‖ a.e. Implicitly, θ̃ depends on u.

B.3.1 Study of J (0)
I

Note that

J
(0)
I = n−1

n∑
i=1

∫
ai(u)K(v)(τ − τ̂)(u− hv)ω(u) du dv

= n−1
n∑

i=1

∫
ai(u)K(v)∂θτ(u− hv, θ0).(θ̂ − θ0)ω(u) du dv

+ (2n)−1
n∑

i=1

∫
ai(u)K(v)∂2

θτ(u− hv, θ̃).(θ̂ − θ0)(2)ω(u) du dv

= J
(0)
I,1 + J

(0)
I,2 .
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Actually, the latter random quantity θ̃ depends on u−hv. The first previous term J
(0)
I,1 can be

dealt exactly as in Fan [19]. This author has assumed θ̂ is the maximum likelihood estimator

of θ, which implies B(θ0,Yi) is a score function. Actually, by reading carefully her proof, we

notice we need only B(θ0,Yi) is centered and belongs in L2, viz our assumption (E). Thus,

J
(0)
I,1 = OP (n−1). Moreover, by some change of variables,

‖J (0)
I,2‖ ≤

Cst

n

n∑
i=1

∫
|K|(ũ)|K|(v)‖∂2

θτ(Yi − hũ− hv, θ̃)‖ω(Yi − hũ) dũ dv.‖θ̂ − θ0‖2.

To bound the previous right hand side, we could assume

E

[
sup

{(u,v,θ)|‖u‖+‖v‖≤2h,‖θ−θ0‖≤ε}
‖∂2

θτ(Yi − u, θ)‖ · |ω|(Yi − v)

]
<∞. (B.10)

This assumption is satisfied under the stronger condition (T), for n sufficiently large.

Thus, under (B.10), we get

J
(0)
I,2 = OP (‖θ̂ − θ0‖2) = OP (n−1).

B.3.2 Study of J (1)
I

J
(1)
I =

(−1)
nh

∑
i

∫
ai(u)E[(dK)h(u−Y∗

i ).(Yn,i −Yi)]ω(u) du.

Clearly, this term is centered. Note that, by a limited expansion of K up to the p’th order,

we can prove that

E[(dK)h(u−Y∗
i ).(Yn,i −Yi)] = O

(
1
n

+
1

hp+d
·
(

ln2 n

n

)(p+1)/2
)
. (B.11)

The latter upper bound is uniform with respects to u. Therefore, the variance of J (1)
I is

E[
(
J

(1)
I

)2
] =

1
n2h2

∑
i

E

∫
ai(u1)ai(u2)E[(dK)h(u1 −Y∗

i ).(Yn,i −Yi)]

· E[(dK)h(u2 −Y∗
i ).(Yn,i −Yi)]ω(u1)ω(u2) du2 du1

= O

(
1
nh2

· 1
n2

+
1
nh2

· 1
h2p+2d

·
(

ln2 n

n

)p+1
)

= o

(
1

n2hd

)
,

by a change of variables with respects to y and u2, and if nph2+2p+d/(ln2 n)p+1 → ∞. The

latter condition is satisfied under our assumptions with p = 2.
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B.3.3 Study of J (2)
I

With obvious notations,

J
(2)
I = n−1

n∑
i=1

∫
b∗n,i(u)K(v)(τ − τ̂)(u− hv)ω(u) du dv

= n−1
n∑

i=1

∫
[bn,i + c∗n,i](u)K(v)

[
∂θτ(u− hv, θ0).(θ̂ − θ0)

+ 2−1∂2
θτ(u− hv, θ̃).(θ̂ − θ0)(2)

]
ω(u) du dv

= n−1
n∑

i=1

∫
bn,i(u)K(v)

[
∂θτ(u− hv, θ0).(θ̂ − θ0)

]
ω(u) du dv

+ OP

(
ln2 n

n
· 1
h2n1/2

+
1
h
·
(

ln2 n

n

)1/2

· 1
n

)
,

under the condition (B.10). The main term of the latter expansion is

T ≡ 1
n2

∑
i,j

∫
bn,i(u)K(v)∂θτ(u− hv, θ0)A(θ0)−1B(θ0,Yj)ω(u) du.

Thus, when i 6= j, the expectation of the summand is O(n−1), and

E[T ] =
1
n2

∑
i

E
[
bn,i(u)K(v)∂θτ(u− hv, θ0)A(θ0)−1B(θ0,Yi)

]
ω(u) du +O(n−1)

= O

(
1
nh

·
(

ln2 n

n

)1/2

+
1
n

)
= o

(
1

nhd/2

)
.

Moreover, by the same reasoning, its variance is

V ar(T ) = O

(
1

n2h2
·
(

ln2 n

n

))
= o(

1
n2hd

).

Note that one remainder term is

1
n

∑
i

∫
bn,i(u)K(v)∂θτ(u− hv, θ0)ω(u) du.oP (rn).

The latter term is negligible if (
ln2 n

n

)1/2

· rn
h
<<

1
nhd/2

,

viz if

rn = o

(
1

√
n ln1/2

2 n
· 1
hd/2−1

)
·
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B.3.4 Study of J (3)
I

Clearly, under the previous assumptions,

J
(3)
I = OP

(
1
h
·
(

ln2 n

n

)1/2

· 1
nh

)
= oP

(
1

nhd/2

)
,

since nh2/ ln2 n→∞.

To conclude,

JI = oP

(
1

nhd/2

)
(B.12)

B.4 Study of JII

With the previous notations,

JII =
∫

(Eτn −Kh ∗ τ̂)2ω

=
∫

[Kh ∗ (τ̂ − τ)]2ω +
∫

[Eβ∗ni]
2ω − 2

∫
Kh ∗ (τ̂ − τ)Eβ∗niω.

Applying equation (B.11) with p = 2, we get

Eβ∗ni(u) = O

(
1
n

+
1
h4
·
(

ln2 n

n

)3/2
)
,

uniformly with respects to u. Thus, it is straightforward∫
[Eβ∗ni]

2ω = o

(
1

nhd/2

)
Moreover, under assumption (T) and by a limited expansion with respects to u,∫

[Kh ∗ (τ̂ − τ)]2ω = OP

(
1
n

)
.

By applying Schwartz’s inequality, we obtain

JII = oP

(
1

nhd/2

)
. (B.13)

The result of theorem 3 follows from equations (B.1), (B.2), (B.7), (B.8), (B.12) and (B.13).

2
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C Proof of corollary 4

It is sufficient to prove that

1
nhd

∫
K2(t)((τ̂ − τ)ω)(u− ht) dt du = oP

(
1

nhd/2

)
, and (C.1)

1
nh

∫
K2(t)(τ̂2 − τ2)ω = oP

(
1

nhd/2

)
. (C.2)

Note that, under (T) and by a limited expansion with respects to θ, we have

sup
u∈[ε,1−ε]d

‖τ̂(u, θ̂)− τ(u, θ0)‖ = OP (‖θ̂ − θ0‖) = OP (n−1/2).

Thus, equation (C.1) and (C.2) are clearly satisfied because nhd tends to the infinity when

n→∞, proving the result. 2

D The semiparametric estimator

Consider the parametric family C = {τ(·, θ), θ ∈ Θ}. The semiparametric estimator of θ

satisfies, by definition,

θ̂ = arg max
θ∈Θ

Qn(θ), where

Qn(θ) = n−1
n∑

i=1

ln τ(Yni, θ).

We prove that θ̂ satisfies condition (4.1). By a limited expansion, there exists some random

vector θ∗ such that

∂2
θθQn(θ∗).(θ̂ − θ0) = −∂θQn(θ0),

with ‖θ∗ − θ0‖ ≤ ‖θ̂ − θ0‖ a.e. First, with obvious notations,

∂θQn(θ0) = n−1
n∑

i=1

∂θ ln τ(Yi, θ0) + n−1
n∑

i=1

∂2
y,θ ln τ(Yi, θ0).(Yn,i −Yi)

+
1
2n

n∑
i=1

∂3
yyθ ln τ(Y∗

ni, θ0).(Yn,i −Yi)(2) ≡ S0 + S1 + S2.

We assume that

E
[
‖∂θ ln τ(Y, θ0)‖+ ‖∂2

θ,y ln τ(Y, θ0)‖+ ‖∂3
θ,y,y ln τ(Y, θ0)‖

]
<∞. (D.1)

Obviously, S0 is asymptotically normal. The expectation of S1 is O(n−1) and its variance

is O(n−2). Thus, S1 is OP (n−1). Moreover,

‖S2‖ ≤ Cte · 1
n

n∑
i=1

‖∂3
yyθ ln τ(Y∗

ni, θ0)‖.‖Yni −Yi‖2. (D.2)

Assume the following conditions of regularity :
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1. There exist some constants α et β such that, a.e.,

‖∂3
yyθ ln τ(Y∗

ni, θ0)‖ ≤ α‖∂3
yyθ ln τ(Yi, θ0)‖+ β‖∂3

yyθ ln τ(Yni, θ0)‖, and

2. For every u ∈ (0, 1)d,

‖∂3
yyθ ln τ(u, θ0)‖ ≤ Cst.r(u1)a1 . . . r(ud)ad ,

where ak = (−1 + δ)/pk, 1/p1 + . . .+ 1/pk = 1, δ > 0, and r(t) = t(1− t).

The latter condition ensures the consistency of the empirical mean of ‖∂3
yyθ ln τ(Yni, θ0)‖ (see

Genest et al. [29], proposition A.1). Thus, we get ‖S2‖ = OP (n−1 ln2 n). We have obtained

∂θQn(θ0) = n−1
n∑

i=1

∂θ ln τ(Yi, θ) +OP (ln2 n/n).

Moreover, with obvious notations,

∂2
θQn(θ∗) = ∂2

θQn(θ0) + n−1
n∑

i=1

∂3
θ ln τ(Yni, θ̃).(θ∗ − θ0)

= lim
n∞

E[∂2
θQn(θ0)] +OP (n−1/2),

if ∂2
θQn(θ) is asymptotically normal, and if

n−1
n∑

i=1

sup
θ∈V(θ0)

‖∂3
θ ln τ(Yni, θ)‖ <∞ a.e. (D.3)

Here, V(θ0) denotes a neighborhood of θ0. Applying proposition A.1 of Genest et al. [30],

these two conditions can are ensured if :

1. For every u ∈ (0, 1)d,

M(u) ≡ ‖∂2
θ ln τ(u, θ0)‖ ≤ Cst.r(u1)b1 . . . r(ud)bd ,

where bk = (−0.5+ν)/qk, 1/q1 + . . .+1/qk = 1, ν > 0. Moreover, M(u) has continuous

partial derivatives Mk(u) = ∂M(u)/∂uk, such that

Mk(u) ≤ Cst.r(u1)d
(k)
1 . . . r(ud)d

(k)
d ,

d
(k)
k = bk, d

(k)
j = bj − 1 if j 6= k.

2. For every u ∈ (0, 1)d,

sup
θ∈V(θ0)

‖∂3
θ ln τ(u, θ)‖ ≤ Cst.r(u1)c1 . . . r(ud)cd ,

where ck = (−1 + η)/p′k, 1/p′1 + . . .+ 1/p′k = 1, η > 0.
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Condition (1) ensures the asymptotic normality of the empirical mean of M(Yni). Condi-

tion (2) ensures condition (D.3).

It can be verified that the previous conditions are satisfied by a large number of commonly

used copula families. Particularly, it is the case for the gaussian copula.

Thus, under the previous conditions, we get

√
n(θ̂ − θ0) =

1√
n
A(θ0)−1 ·

n∑
i=1

∂θ ln τ(Yi, θ0) +OP

(
ln2 n

n

)
,

A(θ0) = − lim
n∞

E
[
∂2

θQn(θ)
]

and (4.1) is satisfied. 2

E Proof of theorem 5

We need a technical lemma to control the strength of the dependence between successive

observations.

Let (ξi)i∈Z be a d-dimensional strictly stationary β-mixing process. Let k and i1 < i2 <

. . . < ik be arbitrary integers. For any j, 1 ≤ j ≤ k − 1, put

P
(k)
j (E(j) × E(k−j)) = P ((ξi1 , . . . , ξij ) ∈ E(j))P ((ξij+1 , . . . , ξik) ∈ E(k−j)), and

P
(k)
0 (E(k)) = P ((ξi1 , . . . , ξik) ∈ E(k)),

where E(i) is a Borel set in Rdi. Lemma 1 in Yoshihara (1976) states

Lemma 6. Let h(x1, . . . ,xk) be a Borel measurable function such that∫
|h(x1, . . . ,xk)|1+δ dP

(k)
j ≤M,

for some δ > 0. Then∣∣∣∣∫ h(x1, . . . ,xk) dP
(k)
0 −

∫
h(x1, . . . ,xk) dP

(k)
j

∣∣∣∣ ≤ 4M1/(1+δ)β
δ/(δ+1)
ij+1−ij

.

We mimic the proof of theorem 1. Therefore, with the same notations,

τn(u) = τ∗n(u) +
(−1)
nh

n∑
i=1

(dK)h(u−Yi).(Yn,i −Yi)

+
1

2nh2

n∑
i=1

(d2K)h(u−Y∗
n,i).(Yn,i −Yi)(2)

= τ∗n(u) + R̃1(u) + R̃2(u),
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for some random vector Y∗
n,i satisfying ‖Y∗

n,i −Yi‖ ≤ ‖Yn,i −Yi‖ a.e.

Let us first study R̃1(u). By applying lemma 6 and by noting that∫
(dK)h(u− yi).(1(yk ≤ yi)− yi)τ(yi)τ(yk) dyi dyk = 0, k 6= i,

we get easily

|E
[
R̃1(u)

]
| ≤ 1

n2h

∑
i,k

|E [(dK)h(u−Yi).(1(Yk ≤ Yi)−Yi)]|

≤ Cst

n2hd+1

1 +
∑
i6=k

β
δ/(1+δ)
|k−i|


= O

(
1

nh1+d

)
<<

1√
nhd

,

for every δ > 0. Thus, the expectation of
√
nhdR̃1(u) tends to zero, under our assumptions.

Moreover,

E[R̃2
1(u)] =

1
n4h2

∑
i,j

∑
k,l

E [(dK)h(u−Yi).(1(Yk ≤ Yi)−Yi)

· (dK)h(u−Yj).(1(Yl ≤ Yj)−Yj)] ≡
1

n4h2

∑
i,j

∑
k,l

Vi,j,k,l.

We have to consider successively every orders between the four indices i, j, k, l to apply

lemma 6. Let m = m(n) be a sequence of integers such that m ≤ n, mn →∞ and mn/n→ 0.

For convenience, we choose mn = (lnn)2. Note that nαβγ
mn

tends to zero for every α > 0 and

γ > 0. Therefore,

• If i ≤ j ≤ k ≤ l and |j − k| > mn: apply lemma 6 by setting (i1, i2) = (i, j) and

(i3, i4) = (k, l) to get∣∣∣∣Vijkl −
∫

(dK)h(u− yi).(1(yk ≤ yi)− yi).τ(Yi,Yj)(yi,yj)

· (dK)h(u− yj).(1(yl ≤ yj)− yj).τ(Yk,Yl)(yk,yl) dyi dyj dyk dyl

∣∣∣ ≤ Cst

h2d
βδ/(δ+1)

m ,(E.1)

for every δ > 0.

If, moreover, |k − l| > mn, apply lemma 6 again with i1 = k and i2 = l. We obtain∣∣∣∣∫ (dK)h(u− yi).(1(yk ≤ yi)− yi).τ(Yi,Yj)(yi,yj)

· (dK)h(u− yj).(1(yl ≤ yj)− yj).τ(Yk,Yl)(yk,yl) dyi dyj dyk dyl − 0
∣∣∣ ≤ Cst

h2d
βδ/(δ+1)

m ,
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for every δ > 0.

Otherwise, |k− l| ≤ m. Then there are two sub-cases. When |i−j| > m, apply lemma 6

again by setting i1 = i and i2 = j to get∣∣∣∣∫ (dK)h(u− yi).(1(yk ≤ yi)− yi).(dK)h(u− yj).(1(yl ≤ yj)− yj)

·
[
τ(Yi,Yj)(yi,yj)− τ(yi)τ(yj)

]
τ(Yk,Yl)(yk,yl) dyi dyj dyk dyl

∣∣∣
≤ Cst

h2d
βδ/(δ+1)

m , (E.2)

for every δ > 0. Invoking equation (A.1), we have∫
(dK)h(u− yi).(1(yk ≤ yi)− yi).(dK)h(u− yj).(1(yl ≤ yj)− yj)τ(yi)τ(yj)

τ(Yk,Yl)(yk,yl) dyi dyj dyk dyl =
∫ {

τ(u)
d∑

r=1

Kr

(
ur − ykr

h

)
+O(h)φ(u)

}

·
{
τ(u)

d∑
s=1

Ks

(
us − yls

h

)
+O(h)φ(u)

}
τ(Yk,Yl)(yk,yl) dyk dyl = O(h). (E.3)

The number of terms of this type in the summation R̃1(u) is O(mn3). Recalling equa-

tions (E.1), (E.2) and (E.3), we get that the sum over all the considered indices (i, j, k, l)

is
1

n4h2

∑
i,j,k,l

Vi,j,k,l = O

(
mh

nh2
+

1
h2+2d

βδ/(δ+1)
m

)
<<

1
nhd

·

Else, if |i − j| ≤ m/2, the number of terms of this type in R̃1(u) is O(m2n2). Thus,

applying equation (E.1), we get the corresponding sum is

1
n4h2

∑
i,j,k,l

Vi,j,k,l = O

(
m2

n2h2+2d
+

1
h2+2d

βδ/(δ+1)
m

)
<<

1
nhd

·

• If i ≤ j ≤ k ≤ l and |j − k| ≤ mn: If |l − k| > m, apply lemma 6 by setting

(i1, i2, i3) = (i, j, k) and i4 = l. Else, the number of terms in the sum R̃1(u) is O(m2n2).

By summing them, we get an O(m2/(n2h2+2d)).

• If i ≤ k ≤ j ≤ l: apply lemma 6 by setting (i1, i2, i3) = (i, k, j) and i4 = l, if |j− l| > m.

Else, apply lemma 6 with (i1, i2) = (i, k) and (i3, i4) = (j, l). If, moreover, |i− k| > m,

apply lemma 6 again with i1 = i and i2 = k. Else, the number of corresponding terms

is O(m2n2).
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• If i ≤ l ≤ j ≤ k: If |j − k| > m, apply lemma 6 by setting (i1, i2, i3) = (i, l, j) and

i4 = k. Else, if |j− k| ≤ m and |i− l| ≤ m, the number of such terms in the summation

is O(m2n2).

Otherwise, if |j − k| ≤ m, |i − l| > m and |j − l| > m, apply lemma 6 a first time

with (i1, i2) = (i, l) and (i3, i4) = (j, k), and a second time with i1 = i and i2 = l. If

|j − k| ≤ m, |i − l| > m and |j − l| ≤ m, the number of summands is O(m2n2). The

upper bound follows by applying the previous techniques.

All the other orders between the four indices i, j, k, l can be dealt similarly. Thus, E[R̃2
1(u)] =

o(n−1h−d) and

R̃1(u) = oP (n−1/2h−d/2).

Moreover, from proposition 7.1 in Rio [55], when the cdf Fk are continuous, we have

sup
u∈Rd

sup
k=1,...,d

|Fn,k(u)− Fk(u)| = OP

(
lnn√
n

)
· (E.4)

Thus, R̃2(u) = OP (h−2−d ln2 n/n) and
√
nhdR̃2(u) tends to zero in probability, under our

assumptions.

At last, by revisiting Theorem 2.3 of Bosq [5] with our assumptions, we can prove easily

the asymptotic normality of the joint vector
√
nhd((τ∗n −Kh ∗ τ)(u1), . . . , (τ∗n −Kh ∗ τ)(um)).

We omit the details. This concludes the proof. 2.
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[62] P. Schönbucher and D. Schubert, Copula dependent default risk in intensity models,

Univ. Bonn, mimeo (2001).

[63] J. Shi and T. Louis, Inferences on the association parameter in copula models for bivariate

survival data, Biometrics, 51 (1995) 1384− 1399.

47



[64] B. Silverman, Density estimation for statistics and data analysis, Chapman & Hall, 1986.

[65] K-I. Yoshihara, Limiting behavior of U-statistics for stationary absolutely regular pro-

cesses, Z. Wharscheinlichkeitstheorie verw. Gebiete 35 (1976) 237− 252.

[66] J. Zheng, A consistent test of functional form via nonparametric estimation technique,

J. Econometrics 75 (1996) 263− 289.

48


