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1 Introduction

Copulas have gained popularity in finance and insurance community1 in the past few years because

of the flexibility they offer in modeling the distribution of multivariate random variables; see e.g.,

Frees and Valdez (1998) and Embrechts et al. (2002) for reviews. A copula connects a multivariate

distribution to its marginals in such a way that it captures the entire dependence structure in the

multivariate distribution. The importance of copulas in modeling the distribution of a multivariate

random variable is justified by the Sklar’s (1959) theorem: any multivariate distribution can be

expressed as its copula function evaluated at its marginal distribution functions; and any copula

function when evaluated at any marginal distributions is a multivariate distribution. Hence the

information in the joint distribution is decomposed into those in the marginal distributions and

that in the copula function. Consequently copulas allow one to model the marginal distributions

and the dependence structure of a multivariate random variable separately. Moreover, the copula

measure of dependence is invariant to any increasing transformation of individual series.

Papers that apply copulas in the finance and insurance literatures include Rosenberg (1999) and

Cherubini and Luciano (2002) which analyze multivariate option pricing; Hull and White (1998)

and Embrechts, et al. (2003) which study the portfolio Value-at-Risk; Li (2000) and Frey and

McNeil (2001) which develop models of default and credit risk; and Costinot, et al. (2000) and Hu

(2002) which investigate contagion, to mention just a few. Patton (2002a, b, 2004) extend Sklar’s

theorem to conditional distributions and apply conditional copulas to modeling the time-varying

dependence between different exchange rates, among other things; see Rockinger and Jondeau

(2002) and Granger et al. (2003) for similar applications.

While the afore-mentioned papers use copulas to model the contemporaneous dependence be-

tween multiple time series, there are a few published papers proposing to use copulas to model

temporal dependence within a time series. Joe (1997) proposes a class of parametric stationary

Markov models based on parametric copulas and parametric marginal distributions, and provides

an application to daily air quality measurements; Darsow, et al. (1992) provide a necessary and

sufficient condition for a copula-based time series to be a Markov process. In the copula approach

to time series modeling, the finite dimensional distributions of the time series are generated by

copulas. By coupling different marginal distributions with different copula functions, copula-based

time series models are able to model the dependence structure and the marginal behavior of a time

series separately, allowing for a wide variety of marginal behaviors (such as skewness and fat tailed-

ness) and dependence properties (such as asymmetric dependence and positive tail dependence).

1Copulas have also proven to be useful in microeconometrics, see e.g. Lee (1982a,b, 1983) and Ray, et al. (1980)
on bivariate logit and sample selection models, Heckman and Honore (1989) on competing risk models.
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This separate modelling of the temporal dependence and the marginal behavior is particularly im-

portant when it is known that the dependence structure and the marginal properties of a time

series are affected by different exogenous variables, which can be easily modeled via the parametric

copula approach by letting the copula parameter depend on Xt (say) and the marginal distribution

depend on Zt (say, which may differ from Xt).

In this paper, we study a class of univariate copula-based semiparametric stationary Markov

models, in which copulas are parameterized and are used to model the dependence between the

adjacent observations in a univariate time series, but the invariant (or marginal) distributions are

left unspecified. Our specification is more general than Joe’s (1997) in that we do not parameterize

the marginal distribution, and hence our estimation and inference is robust to misspecification of

marginals. Nevertheless, both ours and Joe’s (1997) specifications impose strict stationarity, while

the most general copula-based Markov models proposed in Darsow, et al. (1992) can allow for

marginal distributions to vary over time. However, Darsow, et al. (1992) only studied some proba-

bilistic properties of their copula-based Markov models. Given that we only observe a finite sample

of the time series once, it is impossible to estimate marginal distributions fully nonparametrically

if we also allow for arbitrarily time-varying marginal distributions.

Although we restrict our attention to a class of strictly stationary Markov models, we shall

demonstrate that many flexible semiparametric regression transformation models belong to this

class of copula-based semiparametric stationary Markov models. Unlike the standard approach

of specifying either the finite dimensional joint distribution or the transition distribution of a

stationary Markov process parametrically, our class of models implies a semiparametric specification

of the transition distribution. Moreover, the abundance of parametric copula specifications will

generate many new forms of transition distributions, and hence many more nonlinear Markov

models which are easy to simulate.2 In Section 2 we also provide conditions under which processes

generated by models in this class are β−mixing.3 Given that the main advantage of a copula-based

approach is to separate out the temporal dependence from the marginal behavior of a time series, it

is natural that our sufficient conditions for processes in this class to be β−mixing with polynomial

decay rates depend only on the copula specification.

A member of the class of copula-based semiparametric stationary Markov models is completely

characterized by two unknown parameters: the copula dependence parameter α∗ (i.e., the finite-

dimensional parameter in the copula function specification); and the invariant (or marginal) dis-

tribution function G∗(·). The unknown marginal distribution can be estimated by any one of the
2One important application of copulas in probability and statistics literature is in simulating new multivariate

models.
3β −mixing is one popular measure of temporal persistency for nonlinear Markov time series models.
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existing nonparametric methods, including the rescaled empirical distribution function and the ker-

nel smoothed estimator of the distribution function. The copula dependence parameter can then be

estimated by the pseudo maximum likelihood method. Since the sample pseudo likelihood criterion

depends on the first-step estimator of the marginal distribution function, the resulting estimator of

the dependence parameter α∗ is semiparametric and is often called a two-step estimator. In par-

ticular, we focus on the two-step estimator of α∗ where the rescaled empirical distribution function

is used as the first step estimator of G∗(·) in the pseudo likelihood criterion. This method extends
the two-step approach commonly used in bivariate copula models for i.i.d. observations4 to our

class of univariate copula-based semiparametric time series models. We establish the consistency

and
√
n−asymptotic normality of the semiparametric estimators of (G∗, α∗) under easily-verifiable

conditions. Interestingly, the asymptotic variance of the two-step estimator of the copula depen-

dence parameter α∗ does not depend on the functional form of the marginal distribution G∗, and

hence any marginal density behavior (such as fat tailedness) has no impact on the large sample

inference using the two-step estimator of α∗. As in the i.i.d. case, these results are not easy to

establish under primitive conditions, as the score functions and their derivatives blow up to infinity

for many widely used copula functions including the Gaussian copula, the Students t-copula, and

the Clayton copula. The conditions presented in this paper are weak enough to allow for such

copula functions.5 We overcome the technical difficulty by making use of the asymptotic properties

of the rescaled empirical distribution function in a weighted metric. This technique should also

be useful in establishing asymptotic properties of estimators in other models in which the score

function blows up to infinity.

In economic and financial applications, estimating the dependence parameter is often not the

ultimate aim; one is often interested in estimating or forecasting certain features of the transition

distribution of the time series such as the (nonlinear) conditional moment and conditional quantile

functions. For example, estimating the conditional value-at-risk (VaR) of portfolios of assets, or

equivalently the conditional quantile of portfolios of assets, has become routine in risk manage-

ment, see e.g., Duffie and Pan (1997), Gourieroux and Jasiak (2002) and Engle and Manganelli

(2002). This can be easily accomplished for copula-based semiparametric time series models, as

the transition distribution of a time series in this class is completely characterized by the marginal

distribution and the copula dependence parameter. Given the semiparametric estimators of the

4Genest, et al. (1995) and Shih and Louis (1995) study this approach independently, while the latter paper allows
the i.i.d. observations generated from a bivariate copula model to be censored. Both papers and Hu (1998) present
the asymptotic normality of their semiparametric estimators for i.i.d. observations.

5Although the conditions and propositions are stated for copula-based univariate time series models in this paper,
they are also applicable to bivariate time series models where the parametric copula functions are used to model the
contemporaneous dependence between the two univariate stationary time series.
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marginal distribution and the copula dependence parameter, one can easily construct an estimator

of the transition distribution of the time series and hence estimators of any (nonlinear) conditional

moment and conditional quantile functions. Moreover, given the joint asymptotic distribution of

the semiparametric estimators of (G∗, α∗) and by applying the Delta method, one can easily es-

tablish the
√
n−consistency and asymptotic normality of the resulting estimators of the nonlinear

conditional moment and conditional quantile functions. It is interesting to note that although the

conditional distribution of a copula-based semiparametric stationary Markov model depends on the

unknown marginal distribution, the estimators of the nonlinear conditional moment and conditional

quantile are still
√
n-consistent and asymptotically normal. Moreover, the estimated conditional

quantile functions are automatically monotonic across different quantiles. These are nice features

of the copula-based semiparametric time series models.

In an unpublished working paper that is independently done from ours, Bouyé, et al. (2002) also

propose to use parametric copulas to model nonlinear autoregressive dependence of time series and

provide applications to financial returns and transactions based forex data. They briefly mention

the two-step procedure of Genest et al. (1995)6 for estimating the copula dependence parameter

without establishing its large sample properties. Moreover, they didn’t study the estimation of any

nonlinear conditional moment and conditional quantile functions of a copula-based semiparametric

time series model.

The rest of this paper is organized as follows. In Section 2, we provide a brief introduction

to copulas, present the class of copula-based semiparametric time series models considered in this

paper, and study their β−mixing property. We also discuss the close relation between the copula-
based semiparametric time series models and the semiparametric regression transformation models.

In Section 3, we introduce the semiparametric estimator of the copula dependence parameter and

estimators of the conditional moment and conditional quantile functions. Section 4 establishes the

asymptotic properties of the estimators proposed in Section 3. In Section 5, we verify the conditions

for the consistency and asymptotic normality of the semiparametric estimator for three widely used

copulas. Section 6 concludes with discussions of several extensions. All the proofs are relegated to

the Appendix.

6It is referred to as the canonical maximum likelihood (CML) estimation method in Bouyé, et al. (2002).

4



2 Copula-Based Time Series Models

2.1 A Brief Review of Copulas

A copula is a multivariate distribution whose marginal distributions are uniform distributions on

the interval (0, 1). The importance of copulas in modeling the distribution of multivariate random

variables is justified by the Sklar’s theorem. For simplicity, let’s consider the bivariate case. Let

H(x, y) denote the joint distribution function of random variables X and Y whose marginal distrib-

ution functions are continuous, denoted as F and G respectively. Sklar’s theorem states that there

exists a unique copula function C(v1, v2) = H(F−1(v1),G−1(v2)) that connects H(x, y) to F (x)

and G(y) via H(x, y) = C(F (x),G(y)). Hence the information in the joint distribution H(x, y) is

decomposed into those in the marginal distributions and that in the copula function, where the

latter captures the dependence structure between X and Y . On the other hand, for any copula

function C and any univariate distribution functions F and G, the function C(F (x), G(y)) is a bi-

variate distribution function. Consequently copulas allow one to model the marginal distributions

and the dependence structure of a multivariate random variable separately. For more discussions

on the theory of copulas and specific examples of copulas, see Joe (1997) and Nelsen (1999).

One copula that we will refer to frequently in this paper is the Gaussian copula. Let Φα(·, ·)
be the distribution function of the bivariate normal distribution with means zero, variances 1, and

correlation coefficient α. Then the Gaussian copula is given by

C(v1, v2;α) = Φα(Φ
−1(v1),Φ−1(v2)), (2.1)

where 0 ≤ v1, v2 ≤ 1 and Φ(·) is the distribution function of a standard normal random variable.

By Sklar’s theorem, for any two marginal distribution functions F (·) and G(·), the distribution
defined as

H(x, y) = C(F (x), G(y);α) = Φα(Φ
−1(F (x)),Φ−1(G(y))) (2.2)

is a bivariate distribution function whose marginals are F (·) and G(·) respectively, and the copula
that connects H(·, ·) to F (·) and G(·) is the Gaussian copula. Hence Sklar’s theorem allows one to

construct bivariate distributions with non-Normal marginal distributions and the Gaussian copula.

Different copulas typically exhibit different dependence properties. Joe (1997) and Nelsen (1999)

contain excellent discussions of various dependence measures and of dependence properties of nu-

merous parametric copulas. One useful dependence measure in modeling financial time series is

that of tail dependence; this is a measure of dependence between random variables in the extreme

lower and upper joint tails. For example, the coefficients of lower and upper tail dependence of a

5



bivariate copula C of (X,Y ) are defined as:

τL = lim
q→0 Pr [G(Y ) ≤ q|F (X) ≤ q] = lim

q→0
C(q, q)

q
(2.3)

τU = lim
q→1 Pr [G(Y ) > q|F (X) > q] = lim

q→1
1− 2q + C(q, q)

1− q
. (2.4)

Heuristically, if (X,Y ) denotes returns on two assets, then the coefficients of upper (lower) tail

dependence of the copula C measure the probability of an extremely large positive (negative) return

on one asset (Y ) given that the other asset has yielded an extremely large positive (negative) return

(X). If the two assets have a bivariate Gaussian copula, then both upper and lower tail dependence

coefficients are zero, i.e., the bivariate Gaussian copula generates zero tail dependence.7

2.2 Copula-Based Semiparametric Time Series Models and Their Mixing Prop-
erties

Let {Yt} be a stationary Markov process of order one. Then its statistical properties are completely
determined by the joint distribution of Yt−1 and Yt, H(y1, y2) (say). By Sklar’s theorem, one can

express H(y1, y2) in terms of the marginal distribution of Yt and the copula function of Yt−1 and

Yt. As a result, the statistical properties of a stationary Markov process {Yt} are completely
determined by its marginal distribution and the copula of Yt−1 and Yt. This suggests the copula

approach as an alternative approach to modeling a stationary Markov process: instead of specifying

the joint distribution of Yt−1 and Yt, one specifies the marginal distribution of Yt and the copula

function of Yt−1 and Yt. The advantage of the copula approach is that one has the freedom to

choose the marginal distribution and the copula function separately; the former characterizes the

marginal behavior such as the fat-tailedness of the time series {Yt}, while the latter characterizes
the temporal dependence property such as nonlinear, asymmetric dependence, of the time series.

In this paper, we will work with the class of copula-based, semiparametric time series models

in which the marginal distribution G∗ is left unspecified, but the copula function has a parametric

form. It is known that if the copula of Yt−1 and Yt is either the Fréchet-Hoeffding upper bound

(C(u1, u2) = min(u1, u2)) or the lower bound (C(u1, u2) = max(u1 + u2 − 1, 0)), then Yt is almost

surely a monotonic function of Yt−1; the resulting time series is deterministic and under stationarity,

Yt = Yt−1 for the upper bound and Yt = G∗−1(1−G∗(Yt−1)) for the lower bound. To avoid these

trivial cases, we shall rule out the perfect dependent copulas in this paper.

Assumption 1: {Yt : t = 1, ..., n} is a sample of a stationary first-order Markov process generated
from (G∗(·), C(·, ·;α∗)), where G∗(·) is the true invariant distribution which is absolutely continuous

7However, this does not mean that the bivariate Gaussian copula (with correlation coefficient α) goes to the
independence copula (i.e., C(u, v) = uv) unless α = 0. More generally, tail independence (i.e., τL = 0, τU = 0) is not
equivalent to independence in the tail (i.e., limx,y{H(x, y)/[F (x)G(y)]} = 1).
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with respect to Lebesgue measure on real line; C(·, ·;α∗) is the true parametric copula for (Yt−1, Yt)
up to unknown value α∗, is absolutely continuous with respect to Lebesgue measure on [0, 1]2, and

does not satisfy the Fréchet-Hoeffding upper or lower bound.

If the marginal distributionG∗(·) belongs to a parametric class of distributions, then Assumption
1 specifies a class of stationary, parametric Markov processes, which was studied in Joe (1997).

Otherwise, it specifies a class of stationary, semiparametric Markov processes which is robust to

misspecification of marginals.

One standard approach that has been used to construct semiparametric time series models is to

specify a parametric conditional density of Yt given Yt−1 with an unspecified marginal distribution

of Yt−1. Our approach specifies the conditional density of Yt given Yt−1 semiparametrically via

h∗(yt|yt−1) = g∗(yt)c(G∗(yt−1), G∗(yt);α∗), (2.5)

where h∗(·|yt−1) is the true conditional density function of Yt given Yt−1 = yt−1, c(·, ·;α∗) is the
copula density of C(·, ·;α∗), and g∗(·) is the density of the marginal distribution G∗(·), which
is unspecified. One obvious advantage of our copula approach over the standard approach is to

separate out the temporal dependence structure from the marginal behavior. This is particularly

important when it is known that the dependence structure and the marginal properties of the time

series are affected by different exogenous variables, which can be easily modeled via the copula

approach by letting the copula parameter α∗ depend on Xt (say) and the marginal distribution

G∗ depend on Zt (which may differ from Xt). A related advantage is that the copula measure of

temporal dependence is invariant to any increasing transformation of the time series.

We observe that the transformed process, {Ut : Ut ≡ G∗(Yt)}, is a stationary parametric
Markov process. Under Assumption 1, the joint distribution of Ut and Ut−1 is given by the copula

C(u0, u1;α
∗), and the conditional density of Ut given Ut−1 = u0 is fUt|Ut−1=u0(u) = c(u0, u;α

∗).

We now study the temporal persistency properties of a time series satisfying Assumption 1.

Definition 1 (Davydov (1973)) For a stationary Markov process {Xt}, its β-mixing coefficients
are given by: βt = E{ sup0≤ψ≤1 | E[ψ(Xt)|X0] − E[ψ(Xt)] | }. The process {Xt} is β-mixing if
limt→∞ βt = 0.

The following result shows that the β-mixing property of a copula-based Markov process {Yt}
is completely determined by its copula density function c(·, ·;α∗). In the following a real-valued
function Λ is called norm-like if the closure of the set {x : Λ(x) ≤ B} is compact for each B > 0.

Proposition 2.1 Under Assumption 1, if c(u1, u2;α
∗) is aperiodic, then the following (i) and (ii)

hold:
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(i) If there are constants 0 < λ < 1, 0 < d <∞, a norm-like function Λ(·) ≥ 1, and a small set
K such thatZ 1

0
Λ(u)× c(Ut−1, u;α∗)du ≤ λΛ(Ut−1) + d1K(Ut−1),

then {Yt} is β-mixing with the exponential decay rate: βt ≤ const× exp{−at} for some a > 0;
(ii) If there are constants λ ∈ [0, 1), 0 < a, d <∞, a norm-like function Λ(·) ≥ 1, and a small

set K such thatZ 1

0
Λ(u)× c(Ut−1, u;α∗)du ≤ Λ(Ut−1)− a[Λ(Ut−1)]λ + d1K(Ut−1),

then {Yt} is β-mixing with the polynomial decay rate: βt(1 + t)λ/(1−λ) → 0 as t→∞.

The assumption that c(u1, u2;α
∗) is aperiodic ensures that any process satisfying Assumption

1 with copula density given by c(u1, u2;α
∗) is β-mixing, since any strictly stationary, recurrent,

aperiodic Markov process is β-mixing, albeit the β-mixing decay rate could be very slow (see e.g.

Bradley (1986)). The conditions in Proposition 2.1 on the copula are sufficient to ensure that the

time series with such a copula is β-mixing with at least a polynomial decay rate.

For many first-order nonlinear stationary Markov models, the conditions that ensure β-mixing

with certain decay rates will involve the invariant distributions, see e.g. Chen, et al. (1998) for

diffusion models. It is interesting to note that the conditions for β-mixing in Proposition 2.1 do

not depend on the invariant distribution G∗, but only depend on the copula specification.

2.3 Semiparametric Regression Transformation Models

As discrete-time Markov models in econometrics are typically expressed as regression models, we

now provide such representations for the copula-based stationary Markov time series models.

Example 1: Let the copula C(·, ·;α) be the Gaussian copula defined in (2.1). Then the process
{Φ−1(G∗(Yt))} is a Gaussian process that can be represented by

Φ−1(G∗(Yt)) = αΦ−1(G∗(Yt−1)) + εt, (2.6)

where εt ∼ N(0, 1−α2), and is independent of Yt−1. If the marginal distributionG∗(·) is left unspec-
ified, then we have the class of semiparametric time series models generated by the Gaussian copula.

If the marginal distribution G∗(·) is the standard normal, then {Yt} is a linear AR(1) process. By
allowing G∗(·) to be non-normal such as Student’s t, we obtain first order Markov processes char-
acterized by the Gaussian copula, but non-normal marginal distributions. By applying Proposition

2.1(i) to this example with Λ(u) = [1 +Φ−1(u)]I{1/2 ≤ u ≤ 1}+ [1−Φ−1(u)]I{0 ≤ u < 1/2}, one
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can easily verify that the time series {Yt} generated by the Gaussian copula is β-mixing with the
exponential decay rate as long as |α| < 1, regardless of its marginal distribution.

Other examples satisfying Assumption 1 can be constructed from the following class of regression

transformation models:

Λ1(Yt) = Λ2(Yt−1) + σ(Yt−1)et, (2.7)

where Λ1(·) is an increasing function, infy σ(y) > 0, and {et} is an i.i.d. sequence with mean zero
and variance one, and et is independent of Yt−1.

Example 2: Clearly (2.7) includes the following semiparametric regression transformation

model:

Λ1,θ1(G
∗(Yt)) = Λ2,θ2(G

∗(Yt−1)) + σθ3(G
∗(Yt−1))et, (2.8)

whereG∗(·) is the unknown probability distribution function of Yt, Λ1,θ1(·) is a parametric increasing
function, Λ2,θ2(·) and σθ3(·) > 0 are also parametric functions, et is independent of Yt−1, and {et}
is i.i.d. with a parametric probability density fe(·; θ4) satisfying mean zero and variance 1. It is
easy to see that {Yt} generated from (2.8) satisfies our Assumption 1 with the parametric copula

density function given by:

c(u0, u1;α
∗) = fe(

Λ1,θ1(u1)− Λ2,θ2(u0)
σθ3(u0)

; θ4)× dΛ1,θ1(u1)

du1
,

where α∗ consists of the distinct elements of θ1, θ2, θ3, θ4. For instance, the stationary Markov

process with the Gaussian copula in Example 1 with a nonparametric marginal distribution G∗(·) is
an example of model (2.8) in which Λ1,θ1(u1) = Φ

−1(u1), Λ2,θ2(u0) = αΦ−1(u0), σθ3(u0) =
√
1− α2,

fe(·; θ4) is the standard normal density, and α∗ = α = θ2 = θ3.

On the other hand, Assumption 1 is consistent with the following generalized semiparametric

regression transformation model without the independence restriction between the error term and

Yt−1:

Λ1,θ1(G
∗(Yt)) = Λ2,θ2(G

∗(Yt−1)) + εt, E{εt|Yt−1} = 0, (2.9)

whereG∗(·) is the unknown probability distribution function of Yt, Λ1,θ1(·) is a parametric increasing
function, Λ2,θ2(u0) ≡ E{Λ1,θ1(G∗(Yt))|G∗(Yt−1) = u0}, and the conditional density of εt given
G∗(Yt−1) = u0 satisfies:

fεt|G∗(Yt−1)=u0(ε) = c(u0,Λ
−1
1,θ1
(ε+ Λ2,θ2(u0));α

∗)÷ dΛ1,θ1(ε+ Λ2,θ2(u0))

dε
.
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We note that the functional form of Λ2,θ2(·) is completely pinned down by Λ1,θ1(·) and the copula
density c(·, ·;α∗). To see this, we recall that Ut ≡ G∗(Yt). Hence

Λ2,θ2(u0) ≡ E{Λ1,θ1(Ut)|Ut−1 = u0} =
Z 1

0
Λ1,θ1(u)× c(u0, u;α

∗)du.

A special case of (2.9) is given by Λ1,θ1(u1) = u1, the identity mapping. In this case,

G∗(Yt) = m(G∗(Yt−1);α∗) + εt, E{εt|Yt−1} = 0,

where the conditional density of εt given Yt−1 is fεt|Yt−1(ε) = c(G∗(Yt−1), ε+m(G∗(Yt−1);α∗);α∗)

and

m(Ut−1;α∗) = E(Ut|Ut−1) =
Z 1

0
uc(Ut−1, u;α∗)du = 1−

Z 1

0

∂C(Ut−1, u;α∗)
∂Ut−1

du.

Hutchinson and Lai (1990) point out that some commonly used copulas have simple expressions

for m(Ut−1;α∗). For example, the Farlie-Gumbel-Morgenstern (F-G-M) copula

C(u1, u2;α
∗) = u1u2[1 + α∗(1− u1)(1− u2)], |α∗| ≤ 1,

and the Plackett copula8

C(u1, u2;α
∗) =

[1 + (α∗ − 1)(u1 + u2)]− {[1 + (α∗ − 1)(u1 + u2)]
2 − 4α∗(α∗ − 1)u1u2}1/2

2(α∗ − 1) ,

have m(Ut−1;α∗) being linear in Ut−1. Noting that E[Ut|Ut−1] = 3−α
6 + α

3Ut−1 for the F-G-M

copula, one can apply Proposition 2.1 (i) with Λ(u) = 1 + u to conclude that {Yt} generated by
the F-G-M copula is always β-mixing with the exponential decay rate.

In closing this subsection, we point out that the copula-based time series specifications lead nat-

urally to semiparametric quantile regression models. For example, the following quantile regression

model holds for {Yt} satisfying Assumption 1:

G∗(Yt) = Qq(G
∗(Yt−1);α∗) + ηt, Pr(ηt ≤ 0|Yt−1) = q ∈ (0, 1),

where the q -th conditional quantile function Qq(Ut−1;α∗) of Ut given Ut−1 can be solved from:Z Qq(Ut−1;α∗)

0
c(Ut−1, u;α∗)du = q for all Ut−1,

or alternatively from

Qq(Ut−1;α∗) = C−12|1(q|Ut−1;α∗), (2.10)

8Lee (1982b) has applied the Plackett copula to construct bivariate logit models. Ray, et al. (1980) have studied
the sample selection models using the F-G-M copula and/or the Pareto copula with logistic marginals.
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where C2|1(·|Ut−1;α∗) = ∂
∂u1

C(Ut−1, ·;α∗) ≡ C1(Ut−1, ·;α∗) is the conditional distribution of Ut

given Ut−1. Bouyé and Salmon (2002) provide explicit expressions of the conditional quantile

functions Qq(·;α) for several specific copulas including the Gaussian copula, the Frank copula, and
the Clayton copula.

In general, the conditional quantile function Qq(·;α∗) is nonlinear. But as it is derived from the
conditional distribution of Ut given Ut−1, it is automatically monotonic across different quantiles.

As a result, the above semiparametric quantile regression model for the time series {Yt} also satisfies
the monotonicity property.

2.4 Simulating Copula-Based Time Series Models

Figure 1 presents time series plots and the corresponding scatter plots of realizations of three

time series models with the Gaussian copula with α = 0.5 and the marginal distributions given

by the standard Normal distribution and the Student’s t distribution with degrees of freedom 3

and 10 respectively. It is apparent from both the time series plots and the scatter plots that the

dependence structure of time series characterized by the Gaussian copula is symmetric regardless

of its marginal distribution. Coupled with fat-tailed marginal distributions such as the Student’s

t with 3 degrees of freedom, the time series model with the Gaussian copula produces large and

small values. However no clustering of such large or small values occurs as the Gaussian copula

does not have tail dependence. As the degrees of freedom of the Student’s t distribution increases,

the time series plot resembles more and more like the one with the Normal marginal distribution.

Figure 1 reveals the limitation of time series models with the Gaussian copula in the context

of modeling economic and financial time series exhibiting complicated nonlinear asymmetric de-

pendence and clusters of large and/or small values. Fortunately, a wide variety of non-Gaussian

copulas is available to serve this purpose, see Joe (1997) and Nelsen (1999). For example, the

Clayton copula is given by:

C(u1, u2;α) = [u
−α
1 + u−α2 − 1]−1/α, where α > 0. (2.11)

The lower tail dependence parameter for this family is τL = 2−1/α and the upper tail dependence

parameter is τU = 0. The lower tail dependence of the Clayton copula increases as α increases.

When coupled with fat-tailed marginal distributions such as the Student’s t distribution, this family

of copulas can generate time series with clusters of small values and hence provide alternative models

for economic and financial time series that do exhibit such clusters.

It is very easy to simulate a time series from a copula-based Markov model. Let C2|1(·|u1;α∗) =
∂
∂u1

C(u1, ·;α∗) ≡ C1(u1, ·;α∗) be the conditional distribution of Ut given Ut−1 = u1. To generate

11



a series {Yt}nt=1 from a non-Gaussian copula-based time series model (G∗(·), C(·, ·;α∗)), one may
proceed as follows:

Step 1. Generate n independent U(0, 1) random variables {Xt}nt=1.

Step 2. Generate U1 = X1 and Ut = C−12|1(Xt|Ut−1;α∗) for t = 2, ..., n.

Step 3. Generate Yt = G∗−1(Ut) for t = 1, . . . , n.

One can easily verify that the necessary and sufficient condition for {Yt}nt=1 to be a realization
from a Markov process is satisfied, see Darsow, et al. (1992).

For the Clayton copula, C2|1(u2|u1;α) = u
−(α+1)
1 [u−α1 + u−α2 − 1]−(α

−1+1) and C−12|1(u2|u1;α) =
[(u

−α/(1+α)
2 − 1)u−α1 + 1]−1/α. Figures 2a and 2b present time series plots and the corresponding

scatter plots of realizations of time series models with the Clayton copula with α = (0.5, 2, 10) and

the marginal distributions given by the standard normal distribution (Figure 2a) and the Student’s t

distribution with degrees of freedom 3 (Figure 2b) respectively. These figures demonstrate that: (1)

unlike the Gaussian copula, the Clayton copula produces time series with asymmetric dependence

structure and the degree of asymmetry becomes stronger as α increases; (2) as α increases, the lower

tail dependence increases leading to smooth time series plots corresponding to small realizations;

(3) coupled with fat-tailed marginal distributions such as the Student’s t distribution with 3 degrees

of freedom, the Clayton copula with large α produces clusters of small values.

Alternative algorithms are available for generating random variables from specific copulas, see

Devroye (1986), Johnson (1987), and Nelsen (1999). These can be adapted to generate time series

observations from copula-based time series models.

3 Estimation of Copula-Based Semiparametric Time Series Mod-
els

In this section we first present estimators of model parameters (G∗, α∗) and then introduce estima-

tors of the conditional moment and conditional quantile functions of Yt given Yt−1.

3.1 Estimation of Model Parameters

A semiparametric copula-based time series model is completely determined by (G∗, α∗). The un-

known marginal distribution G∗ can be estimated by Gn(·), the rescaled empirical distribution
function defined as

Gn(y) =
1

n+ 1

nX
t=1

I{Yt ≤ y}. (3.1)
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It remains to estimate the copula parameter α∗. Under Assumption 1, the true joint distribution

function of Yt−1 and Yt is of a semiparametric form: H
∗(y1, y2) = C(G∗(y1), G∗(y2);α∗) and the

conditional density of Yt given Yt−1 is h∗(Yt|Yt−1) = g∗(Yt)c(G∗(Yt−1), G∗(Yt);α∗). Hence, if the

marginal distribution G∗(·) is completely known, then the log-likelihood function is given by

L(α) =
1

n

nX
t=1

log g∗(Yt) +
1

n

nX
t=2

log c(G∗(Yt−1),G∗(Yt);α). (3.2)

Ignoring the first term on the right hand side of (3.2) and replacing G∗ with Gn in the second

term on the right hand side of (3.2) motivate the semiparametric estimator α̃ of α∗:

α̃ = argmaxαL̃(α), L̃(α) =
1

n

nX
t=2

log c(Gn(Yt−1), Gn(Yt);α). (3.3)

The estimator α̃ extends that in Genest, et al. (1995) for an i.i.d. random sample {(Xi, Yi)}ni=1
from a bivariate distribution H(x, y) = C(F (x), G(y);α∗) of (X,Y ) to a univariate time series

satisfying Assumption 1. We note that the rescaled empirical distribution Gn(·) is used in the
criterion (3.3) instead of the standard empirical distribution 1

n

Pn
t=1 I{Yt ≤ ·}; this is a neat device

to ensure that the criterion function is well defined for all finite n. As the partial derivatives of

log c(u1, u2;α) are infinity at ui = 0 or 1 for i = 1, 2 for many popular copula densities, the use of

the rescaled empirical distribution also ensures that the first order condition of the criterion (3.3)

is well defined for all finite n.

3.2 Estimation of Conditional Moment and Conditional Quantile Functions

In economic and financial applications, one may be interested in estimating or forecasting certain

characteristics of Yt given Yt−1. These can be easily obtained from the conditional density function

h∗(·|Yt−1) of Yt given Yt−1. For example, the conditional k-th mean of Yt given Yt−1 can be

calculated via

E(Y k
t |Yt−1 = y) =

Z
zkh∗(z|y)dz =

Z
zkc(G∗(y), G∗(z);α∗)dG∗(z). (3.4)

Equation (3.4) reveals that in general the conditional mean and the conditional variance of Yt given

Yt−1 are nonlinear functions of Yt−1.

More generally, we may be interested in estimating a vector of conditional moment functions

E[ψ(Yt)|Yt−1], where ψ is a vector of known measurable functions of Yt. For example, ψ(Yt) =

(|Yt|, |Yt|2)0. Since

E[ψ(Yt)|Yt−1 = y] =

Z
ψ(z)c(G∗(y), G∗(z);α∗)dG∗(z), (3.5)
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it can be estimated by the following simple plug-in estimator:

eE[ψ(Yt)|Yt−1 = y] =

Z
ψ(z)c(Gn(y), Gn(z); eα)dGn(z). (3.6)

Another important measure of the conditional distribution of Yt given Yt−1 is the conditional

quantile of Yt given Yt−1 or the conditional VaR of Yt. Estimating conditional VaR of portfolios of

assets has become routine in risk management, see Gourieroux and Jasiak (2002).

Noting that Yt = G∗−1(Ut) is a monotonic transformation of Ut, the q-th conditional quantile

of Yt given Yt−1 is given by

QY
q (Yt−1) = G∗−1(Qq(G

∗(Yt−1);α∗)), (3.7)

where Qq(G
∗(Yt−1);α∗) is defined in (2.10).

The plug-in estimator of the conditional quantile Qq(u;α
∗) of Ut given Ut−1 = u is defined as:

eQq(u) = Qq(u; α̃) = C−12|1(q|u; eα), (3.8)

and the plug-in estimator of the conditional quantile QY
q (y) of Yt given Yt−1 = y is:

eQY
q (y) = G−n ( eQq(Gn(y))) = G−n

³
C−12|1(q|Gn(y); eα)´ , (3.9)

where G−n (v) = inf{y : Gn(y) ≥ v} is the generalized quantile function. For specific copulas,
explicit expressions for the conditional quantile estimators are available. For example, for the

Clayton copula, subsection 2.4 implies that

eQq(u) = [(q
−α̃/(1+α̃) − 1)u−α̃ + 1]−1/α̃, eQY

q (y) = G−1n ([(q
−α̃/(1+α̃) − 1)Gn(y)

−α̃ + 1]−1/α̃).

We note that this semiparametric conditional quantile estimator eQY
q (y) is always non-decreasing

in q. This is a nice feature of the copula-based approach. Although Koenker and Bassett’s (1978)

linear quantile regression estimator satisfies this monotonicity property, the nonlinear quantile

regression extension typically fails to be monotonic across quantiles.

Remark: Instead of using the rescaled empirical distribution function Gn(·) to estimate G∗(·), we
could use the following kernel estimator of the distribution function defined as:

bGn(y) =
1

n

nX
t=1

K(
y − Yt
an

),

where K(x) =
R x
−∞ k(z)dz for a kernel density function k : R → [0,∞), and an is the bandwidth

going to zero at a certain rate as n → ∞. Likewise, we could estimate α∗, E[ψ(Yt)|Yt−1] and
QY
q (Yt−1) using bGn(·) instead of Gn(·):

bα = argmax
α∈A

1

n

nX
t=2

log c( bGn(Yt−1), bGn(Yt);α),
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bE[ψ(Yt)|Yt−1] = Z
ψ(z)c( bGn(Yt−1), bGn(z); bα)d bGn(z), bQY

q (Yt−1) = bG−n ³C−12|1(q| bGn(Yt−1); bα)´ .
According to the general theory of Newey (1994) on semiparametric two-step estimation, the first

order limiting distributions of the estimators based on bGn(·) will be the same as those based on
Gn(·).

4 Large Sample Properties of the Proposed Estimators

In principle, we could state the large sample properties of the proposed estimators by simply refer-

ring to the existing general theories on semiparametric two-step estimation such as Andrews (1994),

Newey (1994), Newey and McFadden (1994), and Chen, et al. (2003). However, we would like to

establish the asymptotic properties under primitive sufficient conditions. The main difficulty in

establishing the asymptotic properties of the semiparametric estimator eα is that the score function
and its derivatives could blow up to infinity near the boundaries. To overcome this difficulty, we

first establish convergence of Gn(·) in a weighted metric and then use it to establish the consistency
and asymptotic normality of α̃. Finally we present the joint asymptotic distribution of Gn(·) and
α̃ which can be used together with the Delta method to establish the asymptotic properties of the

conditional moment and conditional quantile estimators.

4.1 Asymptotic Properties of Gn(·)
In the following we define eUn(v) ≡ Gn(G

∗−1(v)) for v ∈ (0, 1). Let W ∗(·) be a zero-mean tight
Gaussian process in D[0, 1] such that W ∗(0) =W ∗(1) = 0, and

E{W ∗(v1)W ∗(v2)} = min{v1, v2}− v1v2

+
∞X
k=2

{Cov[I(U1 ≤ v1), I(Uk ≤ v2)] + Cov[I(Uk ≤ v1), I(U1 ≤ v2)]}.

Lemma 4.1 Suppose {Yt} satisfies Assumption 1 and is β-mixing. Let w(·) be a continuous func-
tion on [0, 1] which is strictly positive on (0, 1), symmetric at v = 1/2, and increasing on (0, 1/2].

(1) If βt = O(t−b) for some b > 0 and
R 1
0

1
w(v) log(1 +

1
w(v))dv <∞, then

sup
v∈[0,1]

¯̄̄̄
¯ eUn(v)− v

w(v)

¯̄̄̄
¯ = oa.s.(1), sup

y

¯̄̄̄
Gn(y)−G∗(y)

w(G∗(y))

¯̄̄̄
= oa.s.(1).

(2) If either (i) βt = O(t−b) for some b > γ/(γ − 1) with γ > 1 and
R 1
0 (

1
w(v))

2γdv < ∞; or (ii)
βt = O(b−t) for some b > 1 and

R 1
0 (

1
w(v))

2 log(1 + 1
w(v))dv <∞, then

√
n
³ eUn(·)− ·

´
/w(·) → distW

∗(·)/w(·) in D[0, 1],

√
n sup

y

¯̄̄̄
Gn(y)−G∗(y)

w(G∗(y))

¯̄̄̄
= Op(1).
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The results in Lemma 4.1 are much more general than the standard results: supy |Gn(y) −
G∗(y)| = oa.s.(1) and

√
n supy |Gn(y) − G∗(y)| = Op(1). Obviously, choosing w(v) ≡ 1 in Lemma

4.1 leads to the latter results. More importantly, weight functions of the form: w(v) = [v(1−v)]1−ξ
for all v ∈ (0, 1) and for some ξ ∈ (0, 1), also satisfy the conditions of Lemma 4.1 for appropriate
choice of ξ. Such weight functions approach zero when v approaches 0 or 1. Hence, the results

in Lemma 4.1 are stronger than the standard results, allowing us to handle unbounded score

functions. Previously Shao and Yu (1996, theorem 2.2) obtained results similar to our Lemma

4.1(2) for stationary strong mixing processes with decay rate O(t−b), b > 1 +
√
2. Our assumption

on the β-mixing decay rate and the method of proof are different from theirs. According to our

private communication with Shao and Yu, there is no existing result similar to Lemma 4.1(1).

4.2 Asymptotic Properties of α̃

In the following, we shall define G as the space of continuous probability distributions over the
support of Yt [say R]. For any G ∈ G we let ||G − G∗||G = supy |{G(y) − G∗(y)}/w(G∗(y))| with
w(·) satisfying the condition in Lemma 4.1(1). Let Gδ = {G ∈ G : ||G − G∗||G ≤ δ} for a small
δ > 0. Obviously G∗ ∈ Gδ, and Gn will belong to Gδ with probability approaching one. Let
{Gη : η ∈ [0, 1]} ⊂ Gδ be a one-dimensional smooth path in Gδ with Gη|η=0 = G∗. In particular we

can take Gη = G∗ + η[G−G∗] for G ∈ Gδ.
Let A ⊂ Rd be the parameter space. For α ∈ A, we use ||α − α∗|| to denote the usual

Euclidean metric. In addition, let l(v1, v2;α) = log c(v1, v2;α). Denote lα(v1, v2;α) ≡ ∂l(v1,v2;α)
∂α ,

lα,α(v1, v2;α) ≡ ∂2l(v1,v2;α)
∂α∂α0 and lα,j(v1, v2;α) ≡ ∂2l(v1,v2;α)

∂vj∂α
for j = 1, 2.

Proposition 4.2 Suppose Assumption 1 and the following conditions hold:

C1. (i) α∗ ∈ A, A is a compact subset of Rd; (ii) E[lα(Ut−1, Ut;α))] = 0 if and only if α = α∗;

C2. (i) lα(v1, v2;α) is well-defined for (α, v1, v2) ∈ A × (0, 1) × (0, 1), and for all α ∈ A,
lα(Ut−1, Ut;α) is Lipschitz continuous at α with probability one; (ii) lα,j(v1, v2;α), j = 1, 2 are

well-defined, and are continuous in (α, v1, v2) ∈ A× (0, 1)× (0, 1);
C3. {Yt : t = 1, 2, ...} is β-mixing with the mixing decay rate βt = O(t−b) for some b > 0;

C4. E{supα∈A ||lα(Ut−1, Ut;α)|| log[1 + ||lα(Ut−1, Ut;α)||]} <∞;
C5. for j = 1, 2, E{supα∈A,G∈Gδ ||lα,j(G(Yt−1),G(Yt);α)||w(Ut−2+j)} < ∞, where w(·) satisfies
the condition in Lemma 4.1(1).

Then: ||eα− α∗|| = op(1).

We now discuss conditions C1-C5. The first two conditions are standard. The third condition,9

9We could replace this condition with a strong mixing condition by using the result in Shao and Yu (1996)

16



C3, requires that the process {Yt} is β-mixing with the polynomial decay rate, which may be
verified via Proposition 2.1. Roughly speaking, C4 is a moment condition on the score function.

C5 states that the partial derivatives of the score function with respect to the first two arguments

must be dominated by a function which has a finite first moment when weighted by a weighting

function w(·) satisfying the condition in Lemma 4.1(1). If the partial derivatives of the score

function are bounded, then one can choose the identity weighting function and C5 is automatically

satisfied. However, as the partial derivatives of the score function can be unbounded for some

copula functions, C5 may not be satisfied with the identity weighting, but may be satisfied with

other weighting functions such as w(v) = [v(1− v)]1−ξ for all v ∈ (0, 1) and for some ξ ∈ (0, 1).
In the following we denote Fδ = {(α,G) ∈ A × Gδ : ||α − α∗|| ≤ δ} for a small δ > 0. Let

{(αη, Gη) : η ∈ [0, 1]} ⊂ Fδ be a one-dimensional smooth path in Fδ with (αη, Gη)|η=0 = (α∗, G∗).
We also define

A∗n ≡ 1

n− 1
nX
t=2

[lα(Ut−1, Ut;α
∗) +W1(Ut−1) +W2(Ut)], (4.1)

W1(Ut−1) ≡
Z 1

0

Z 1

0
[I{Ut−1 ≤ v1}− v1]lα,1(v1, v2;α

∗)c(v1, v2;α∗)dv1dv2, (4.2)

W2(Ut) ≡
Z 1

0

Z 1

0
[I{Ut ≤ v2}− v2]lα,2(v1, v2;α

∗)c(v1, v2;α∗)dv1dv2. (4.3)

The following set of conditions are sufficient to ensure the
√
n -asymptotic normality of eα:

A1. (i) condition C1 is satisfied with α∗ ∈ int(A); (ii) B ≡ −E [lα,α(Ut−1, Ut;α
∗)] is positive

definite; (iii) Σ ≡ limn→∞ V ar(
√
nA∗n) is positive definite; (iv) ||eα−α∗|| = op(1), and supy |{Gn(y)−

G∗(y)}/w2(G∗(y))| = Op(n
−1/2), where w2(·) satisfies the condition in Lemma 4.1(2);

A2. lα,α(v1, v2;α), lα,j(v1, v2;α), j = 1, 2, are well-defined, and are continuous in (α, v1, v2) ∈
int(A)× (0, 1)× (0, 1);
A3. the interchange of differentiation and integration of lα(Gη(Yt−1), Gη(Yt);αη) with respect to

η ∈ (0, 1) is valid;
A4. (i) {Yt : t = 1, 2, ...} is stationary β-mixing with the mixing decay rate βt = O(t−b) for some

b > γ/(γ − 1), in which γ > 1; (ii) E{||W1(Ut−1) +W2(Ut)||2γ} <∞ for some γ > 1;

(iii) E{sup(α,G)∈Fδ ||lα(G(Yt−1),G(Yt);α)||}2γ <∞ for some γ > 1;

A4’. (i) {Yt : t = 1, 2, ...} is stationary β-mixing with the mixing decay rate βt = O(b−t) for some

b > 1; (ii) E{||W1(Ut−1) +W2(Ut)||2 log[1 + ||W1(Ut−1) +W2(Ut)||]} <∞;
mentioned earlier. However the conditions on the strong mixing decay rate and the existence of finite higher order
moments of the score function and its partial derivatives will be stronger than those for β-mixing processes. As many
copula models have score functions blowing up at a fast rate, it is essential to maintain minimal requirements for
the existence of finite higher order moments. This motivates us to use the β-mixing condition instead of the strong
mixing.
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(iii) E{sup(α,G)∈Fδ ||lα(G(Yt−1),G(Yt);α)||2 log[1 + ||lα(G(Yt−1), G(Yt);α)||]} <∞;
A5. E{sup(α,G)∈Fδ ||lαα(G(Yt−1),G(Yt);α)||}2 <∞;
A6. E{sup(α,G)∈Fδ ||lα,j(G(Yt−1), G(Yt);α)||w(Ut−2+j)}2 <∞ for j = 1, 2, where w(·) satisfies the
condition in Lemma 4.1(1) and E{[w2(Ut)w(Ut)

]2} <∞.
We now comment on conditions A1 and A6; the other conditions are similar to those in Propo-

sition 4.2. Condition A1(i) requires that α∗ is in the interior of the parameter space. This is also

assumed in Genest, et al. (1995) and is a typical condition in classical parametric and semipara-

metric models, see the conclusion section for further discussion about this. A1(ii) and A1(iii) are

also standard regularity conditions. A1(iv) requires that Gn(·) converges uniformly to G∗(·) at a
rate n−1/2 in the weighted metric with the weight w2(·) satisfying the condition in Lemma 4.1(2).
This condition implies that w2(·) could go to zero at a slower rate than that in Lemma 4.1(1).
Similar to C5, A6 requires that the partial derivatives of the score function are dominated by a

function which has a finite second moment when weighted by the weight function w(·) satisfying
the condition in Lemma 4.1(1). The assumption

R 1
0 [

w2(v)
w(v) ]

2dv < ∞ in A6 restricts the relative

decay rate of w(·) in A6 to w2(·) in A1(iv); when the time series {Yt} is stationary β-mixing with

the exponential decay rate, we can take w2(v) ≈
p
w(v), see e.g., the Gaussian copula example in

Section 5. The fact that w(·) could go to zero at a fast rate is very important for copula models in
which supα ||lα,j(v1, v2;α)|| (j = 1, 2) can blow up to infinity at a fast rate.

Proposition 4.3 Under Assumption 1 and conditions A1 - A3, A4 (or A4’), A5 - A6, we have:

(1) α̃−α∗ = B−1A∗n+ op(n
−1/2); (2)

√
n(α̃−α∗)→ N(0, B−1ΣB−1) in distribution, where B and

Σ are defined in A1 and A∗n in (4.1).

The additional terms W1(Ut−1) and W2(Ut) in A∗n are introduced by the need to estimate the

marginal distribution function G∗(·). In the case where the distribution G∗(·) is completely known,
both terms disappear from A∗n. It is interesting to note that the asymptotic variance of α̃ does not

depend on the functional form of the marginal distribution G∗.

4.3 Asymptotic Properties of the Conditional Moment and Conditional Quan-
tile Estimators

The asymptotic properties of the conditional moment and conditional quantile estimators can be

established from the joint asymptotic distribution of Gn(·) and α̃ via the Delta method. Lemma

4.1(2), Proposition 4.3(1) and the Cramér-Wold device lead to the following result.

Proposition 4.4 Under the conditions of Proposition 4.3,

√
n

µ
Gn(·)−G∗(·)
w(G∗(·)) , [α̃− α∗]

¶
→
µ
W ∗(G∗(·))
w(G∗(·)) , Z∗

¶
in distribution,
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where (W
∗(·)

w(·) , Z
∗) is a bivariate Gaussian process on D[0, 1]×Rd and Z∗ ∼ N(0, B−1ΣB−1).

The covariance of (W
∗(·)

w(·) , Z
∗) can be derived by using the expression of Gn(·) and Proposition

4.3(1). The expression is tedious and thus omitted. Proposition 4.4 and the following expansions

can be used to establish the asymptotic distributions of the conditional moment and conditional

quantile estimators. In particular, they show that even though the transition distribution of the

time series model is semiparametric, the conditional moment and conditional quantile functions can

still be consistently estimated at the parametric
√
n−rate and the estimators are asymptotically

normally distributed.

Under mild conditions, one can show that the conditional moment estimator (3.6) satisfies

eE[ψ(Yt)|Yt−1 = y]−E[ψ(Yt)|Yt−1 = y]

=

Z
ψ(z)c(G∗(y),G∗(z);α∗)d[Gn(z)−G∗(z)]

+

Z
ψ(z)c1(G

∗(y), G∗(z);α∗)[Gn(y)−G∗(y)]dG∗(z)

+

Z
ψ(z)c2(G

∗(y), G∗(z);α∗)[Gn(z)−G∗(z)]dG∗(z)

+

Z
ψ(z)cα(G

∗(y), G∗(z);α∗)dG∗(z)× (eα− α∗) + op(n
−1/2),

where cj(·, ·;α∗) denotes the partial derivative of c with respect to the j argument, j = 1, 2, α.
Similarly, one can show that under mild conditions, the conditional quantile estimator (3.8) of

Ut given Ut−1 = u satisfies

eQq(u)−Qq(u;α
∗) =

∂C−12|1(q|u;α∗)
∂α

(eα− α∗) + op(n
−1/2).

Again the asymptotic distribution of the estimator of the conditional quantile of Ut given Ut−1
does not depend on the marginal distribution G∗. Nevertheless, the fact that G∗ is unknown and

is estimated by Gn does affect the asymptotic variance of eQq(u) via its impact on (eα− α∗).

Finally after tedious calculations, we have for the conditional quantile estimator (3.9) of Yt

given Yt−1 = y:

eQY
q (y)−QY

q (y)

=
1

g∗(QY
q (y))

{Gn(Q
Y
q (y))−G∗(QY

q (y))}+
1

g∗(QY
q (y))

{
∂C−12|1(q|u;α∗)

∂u1
[Gn(y)−G∗(y)]}

+
1

g∗(QY
q (y))

{
∂C−12|1(q|u;α∗)

∂α
(eα− α∗)}+ op(n

−1/2), with u = G∗(y).

Again the conditional quantile of Yt given Yt−1 can be estimated consistently at the parametric√
n−rate. Unfortunately the limiting distribution of its estimator depends on the marginal density

g∗(QY
q (y)).
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4.4 Statistical Inference

The asymptotic distributions of the estimators established in this section may be used to construct

inference procedures for the underlying population quantities of interest. The unknown asymptotic

variances of the estimators of α∗ and of E[ψ(Yt)|Yt−1 = y] can be simply estimated by any existing

heteroscedasticity autocorrelation consistent (HAC) covariance estimators, see e.g. Newey and

West (1987) and Andrews (1991). The asymptotic variance of the estimator of the conditional

quantile QY
q (y) can be obtained by combining a consistent estimator (say a kernel estimator) of

the marginal density g∗(QY
q (y)) with a HAC estimator, see e.g. Robinson (1983), Powell (1991),

Newey (1994) and Engle and Manganelli (2002). Alternatively, some bootstrap methods may be

used to approximate the asymptotic distributions of the estimators of interest directly.

For the class of copula-based semiparametric time series models, one convenient bootstrap

procedure is the semiparametric bootstrap which takes advantage of the fact that Yt = G∗−1(Ut),

where {Ut}nt=1 is a stationary first-order Markov process with the copula C(u1, u2;α
∗) being the

joint distribution of (U1, U2). The semiparametric bootstrap procedure involves:

Step 1. Generate n independent U(0, 1) random variables {Xt}nt=1.

Step 2. Generate U b
1 = X1 and U

b
t = C−12|1(Xt|U b

t−1; α̃) for t = 2, ..., n. This leads to one bootstrap

sample {Ub
t }nt=1.

Step 3. Let Y b
t =

bG−1n (U b
t ), where

bGn(y) is the kernel estimator defined in Section 3. Compute

the corresponding estimate using the bootstrap sample {Y b
t }nt=1.

Step 4. Repeat Steps 1 - 3 a large number of times and use the empirical distribution of the

centered bootstrap values of the estimator to approximate its distribution.

Observing that conditional on the time series {Yt}nt=1, the bootstrap time series {Y b
t } satisfies

Assumption 1 with the continuous marginal distribution bGn(·) and the copula function C(·, ·; α̃) and
hence under the conditions of Proposition 4.3, bootstrap works for all the estimators we proposed in

the sense that the conditional distribution of the bootstrap estimator converges in probability to the

asymptotic distribution of the corresponding estimator based on the original data. Consequently,

inference procedures can be constructed from the bootstrap distribution.

5 Examples

In this section we verify the conditions of Propositions 4.2 and 4.3 for three copulas: the Gaussian

copula, the Frank copula, and the Clayton copula. The Gaussian copula is widely used and turns

20



out to be the most difficult to check, as its score function blows up faster than most other copulas.

By choosing the weighting functions in A1(iv) and A6 carefully, we are able to verify them for the

Gaussian copula. Unlike the Gaussian copula, the Frank copula has bounded score functions. As a

result, the identity weighting is enough to verify the conditions of Propositions 4.2 and 4.3 for the

Frank copula. The Clayton copula also has unbounded score functions. Similar arguments used to

verify conditions for the Gaussian copula can be used to show that the Clayton copula also satisfies

the conditions of Propositions 4.2 and 4.3 for appropriate choices of the weighting functions.

5.1 The Gaussian Copula

From (2.1), it follows that the copula density of the Gaussian copula is given by

c(v1, v2;α) =
φα(Φ

−1(v1),Φ−1(v2))
φ(Φ−1(v1))φ(Φ−1(v2))

,

where φα(·, ·) is the density function of Φα(·, ·) and φ(·) is the density function of Φ(·). Apart from
a constant term, we get

l(v1, v2, α) = −1
2
ln(1− α2)− 1

2(1− α2)
{[Φ−1(v1)]2 + [Φ−1(v2)]2 − 2αΦ−1(v1)Φ−1(v2)}.

As a result, the first and second order partial derivatives of l(v1, v2, α) are given by

lα(v1, v2, α) =
α(1− α2)− α{[Φ−1(v1)]2 + [Φ−1(v2)]2}+ (1 + α2)Φ−1(v1)Φ−1(v2)

(1− α2)2
,

lαα(v1, v2, α) =
1 + α2

(1− α2)2
+
(6α+ 2α3)Φ−1(v1)Φ−1(v2)− (1 + 3α2){[Φ−1(v1)]2 + [Φ−1(v2)]2}

(1− α2)3
,

lα,1(v1, v2, α) =
(1 + α2)Φ−1(v2)− 2αΦ−1(v1)

(1− α2)2φ(Φ−1(v1))
, lα,2(v1, v2, α) =

(1 + α2)Φ−1(v1)− 2αΦ−1(v2)
(1− α2)2φ(Φ−1(v2))

.

5.1.1 Consistency

We first establish the consistency of eα for α∗ by verifying conditions C1 - C5 of Proposition 4.2.
Suppose |α∗| < 1, especially, α∗ ∈ int(A) with A = [−1 + η, 1− η] for an arbitrarily small η > 0.

Then condition C1(i) is satisfied. Conditions C1(ii), C2, and C3 are trivially satisfied. It remains

to verify conditions C4 and C5. We first notice that there are constants M1, M2 > 0 and small

� > 0 such that for all v ∈ (0, 1), the following inequalities hold:¯̄̄̄
¯ Φ−1(v)φ(Φ−1(v))

¯̄̄̄
¯ ≤ [v(1− v)]−1, |Φ−1(v)| ≤M1[v(1− v)]−�,

1

φ(Φ−1(v))
≤M2[v(1− v)]−1,

see e.g., Hu (1998, page 132). Let r(v) ≡ v(1− v), then there are constants k1, k2 > 0 such that

sup
α∈A

||lα(v1, v2, α)| | ≤ k1{[r(v1)r(v2)]−� + [r(v1)]−2� + [r(v2)]−2�} ≤ k2[r(v1)r(v2)]
−2�.
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Since Ut ∼ U(0, 1), one can easily verify that condition C4 is satisfied as long as � ∈ (0, 1/2)
such that

R 1
0 [r(v)]

−2�{1 + log([r(v)]−2�)}dv <∞. For condition C5, since

sup
α∈A

||lα,1(v1, v2, α)| | ≤ k1
[r(v2)]

−� + 1
r(v1)

, sup
α∈A

||lα,2(v1, v2, α)|| ≤ k2
[r(v1)]

−� + 1
r(v2)

,

for some constants k1, k2 > 0, it suffices to show that for an arbitrarily small δ > 0,

E

"
sup
G∈Gδ

{[r(G(Yt−1))]−1[r(G(Yt))]−�}w(Ut−1)
#
<∞,

for a weighting function w(·) satisfying the condition for Lemma 4.1(1). By the definition of Gδ,
one can show that the following inequalities hold almost surely:

1

G∗(Yt)− δw(G∗(Yt))
≥ 1

G(Yt)
≥ 1

G∗(Yt) + δw(G∗(Yt))
,

1

1−G∗(Yt)− δw(G∗(Yt))
≥ 1

1−G(Yt)
≥ 1

1−G∗(Yt) + δw(G∗(Yt))
.

Hence, we get

1

r(Ut−1)− δw(Ut−1)
≥ 1

[1− Ut−1 − δw(Ut−1)][Ut−1 − δw(Ut−1)]
≥ 1

r(G(Yt−1))
,

1

{r(Ut)− δw(Ut)}� ≥
1

{[1− Ut − δw(Ut)][Ut − δw(Ut)]}� ≥
1

{r(G(Yt))}� .

Let w(v) = [r(v)]1−ξ for some ξ ∈ (0, 1). By Holder’s inequality, we have

E

·
w(Ut−1)

[r(Ut−1)− δw(Ut−1)]{r(Ut)− δw(Ut)}�
¸

≤ {E[{[r(Ut)]
ξ − δ}−p]}1/p{E[{r(Ut)− δ[r(Ut)]

1−ξ}−�q]}1/q,

where p, q > 1 and 1
p+

1
q = 1. Hence condition C5 is satisfied as long as ξ ∈ (0, 1/p) and � ∈ (0, 1/q).

Proposition 4.2 now implies that eα− α∗ = op(1).

5.1.2
√
n-normality

We now establish
√
n -asymptotic normality of eα by verifying conditions A1 - A6 of Proposition

4.3. Obviously A1(i) is satisfied. One can easily verify that

B =
1 + α∗2

(1− α∗2)2
, W1(Ut−1) =

α∗{[Φ−1(Ut−1)]2 − 1}
2(1− α∗2)

, W2(Ut) =
α∗{[Φ−1(Ut)]

2 − 1}
2(1− α∗2)

,

A∗n =
−1
n− 1

nX
t=2

α∗(1 + α∗2)([Φ−1(Ut−1)]2 + [Φ−1(Ut)]
2)− 2(1 + α∗2)Φ−1(Ut−1)Φ−1(Ut)

2(1− α∗2)2
.
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Hence conditions A1(ii)(iii) are satisfied. Since the time series generated from Assumption 1 with

the Gaussian copula is stationary β-mixing with the exponential decay rate, condition A1(iv)

is satisfied with the weighting function w2(v) = [r(v)](1−ξ)/2 for some ξ ∈ (0, 1). Conditions

A2, A3 and A4’(i)(ii) are satisfied. It remains to check conditions A4’(iii), A5 and A6. Since

supα∈A ||lαα(v1, v2, α)| | ≤ k[r(v1)r(v2)]
−2�, similar to condition C5, one can conclude that condi-

tions A4’(iii) and A5 are satisfied if

E{[{r(Ut−1)− δw(Ut−1)}{r(Ut)− δw(Ut)}]−4�(1 + log[r(Ut)− δw(Ut)]
−2�)} <∞,

which is satisfied for some � ∈ (0, 1/8). Finally let w(v) = [r(v)]1−ξ for some ξ ∈ (0, 1) satisfying
the condition in Lemma 4.1(1). Then E{[w2(Ut)w(Ut)

]2} = R 1
0

1
[r(v)]1−ξ dv <∞. Also for any p, q > 1 with

1
p +

1
q = 1 we have

E

·
w(Ut−1)

{r(Ut−1)− δw(Ut−1)}{r(Ut)− δw(Ut)}�
¸2

≤ {E[{[r(Ut)]
ξ − δ}−2p]}1/p{E[{r(Ut)− δ[r(Ut)]

1−ξ}−2�q]}1/q <∞,

where the last inequality holds as long as ξ ∈ (0, 12p) and � ∈ (0, 12q ). Hence condition A6 is satisfied.
Consequently, the following result holds:

√
n(α̃− α∗) = B−1A∗n + op(1)→ N(0, 1− α∗2) in distribution.

5.2 The Frank Copula

The Frank copula density function is

c(v1, v2;α) = log(α−1)
αv1αv2

1− α

·
1− (1− αv1)(1− αv2)

1− α

¸−2
if α > 0, α 6= 1;

= 1 if α = 1.

This copula generates positive dependence between Yt−1 and Yt when α ∈ (0, 1), negative depen-
dence when α > 1, and independence when α = 1, see Nelsen (1999) for additional properties. We

assume α∗ ∈ int(A) with A = [A−1, A] for a large A > 1.

If α > 0, α 6= 1, then

l(v1, v2, α) = log log(α
−1)− log(1− α) + (v1 + v2) logα− 2 log

µ
1− (1− αv1)(1− αv2)

1− α

¶
.

Hence,

lα(v1, v2, α) =
1

α logα
+

1

1− α
+

v1 + v2
α

−
2
h
(1−αv2)αv1v1+(1−αv1 )αv2v2

α(1−α) − (1−αv1 )(1−αv2)
(1−α)2

i
1− (1−αv1 )(1−αv2)

1−α
,
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lα,1(v1, v2, α) =
1

α
+
2
h
(1−αv2)αv1v1+(1−αv1 )αv2v2

α(1−α) − (1−αv1 )(1−αv2)
(1−α)2

i h
(1−αv2 )αv1 logα

1−α
i

[1− (1−αv1)(1−αv2 )
1−α ]2

−
2
h
(1−αv2 )αv1 (1+logα)−αv2v2αv1 logα

α(1−α) + (1−αv2 )αv1 logα
(1−α)2

i
1− (1−αv1 )(1−αv2)

1−α
,

lαα(v1, v2, α) =
2
h
(1−αv2)αv1v1+(1−αv1 )αv2v2

α(1−α) − (1−αv1 )(1−αv2)
(1−α)2

i2
[1− (1−αv1 )(1−αv2)

1−α ]2

−
2 (1−α

v1 )
(1−α)3

n³
2v2
α − 2v2 + 1− (1−α)2v2(1−v2)

α2

´
αv2 − 1

o
1− (1−αv1 )(1−αv2)

1−α

−
2 (1−α

v2 )
(1−α)3

n³
2v1
α − 2v1 + 1− (1−α)2v1(1−v1)

α2

´
αv1 − 1

o
− 4v1v2αv1αv2

α2(1−α)
1− (1−αv1)(1−αv2 )

1−α

− 1 + logα
(α logα)2

+
1

(1− α)2
− v1 + v2

α2
.

If α = 1, then l(v1, v2, α) = 0; lα(v1, v2, α) = v1 + v2 − 2v1v2 − 1/2; lα,1(v1, v2, α) = −2v2 + 1;
and lαα(v1, v2, α) = 2(v1v2)

2 − 2(v1v2)(v1 + v2 − 2)− (v1 + v2) + 5/12.

It is easy to see that Conditions C1, C2, A2 and A3 are automatically satisfied. Although

the score function and its derivatives are in complicated forms, one can show that |lα(v1, v2, α)|,
|lαα(v1, v2, α)|, |lα,j(v1, v2, α)| for j = 1, 2, are all bounded uniformly in v1, v2 ∈ [0, 1] and α ∈
int(A). Hence Conditions C4, C5, A4(iii) or A4’(iii), A5 and A6 are trivially satisfied with the iden-
tity weighting function w(·) = 1. Assuming condition A4(i) or A4’(i), then conditions A1(ii)(iii)(iv)
with w2(·) = 1, and A4(ii) or A4’(ii) are trivially satisfied. We can now apply Proposition 4.2 to
establishing the consistency of eα, and apply Proposition 4.3 to obtain its√n−asymptotic normality.
5.3 The Clayton Copula

The copula density of the Clayton copula is given by

c(v1, v2;α) = (1 + α)v
−(α+1)
1 v

−(α+1)
2 [v−α1 + v−α2 − 1]−(α−1+2), where α > 0.

Hence, the log-copula density and its derivatives are:

l(v1, v2;α) = log(1 + α)− (α+ 1) log v1 − (α+ 1) log v2 − (α−1 + 2) log(v−α1 + v−α2 − 1).

lα(v1, v2;α) =
1

1 + α
− log(v1v2) + log(v

−α
1 + v−α2 − 1)

α2
+ (

1

α
+ 2)

v−α1 log v1 + v−α2 log v2

v−α1 + v−α2 − 1 ,

lα,1(v1, v2;α) =
−1
v1
+
(1 + 2α)[v−α2 (log v2 − log v1) + log v1] + 2(v−α1 + v−α2 − 1)

vα+11 (v−α1 + v−α2 − 1)2 ,
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lα,α(v1, v2;α) = − 1

(1 + α)2
− 2

α3
log(v−α1 + v−α2 − 1)− 2(v

−α
1 log v1 + v−α2 log v2)

α2(v−α1 + v−α2 − 1)
+ (

1

α
+ 2){(v

−α
1 log v1 + v−α2 log v2)

2

(v−α1 + v−α2 − 1)2 − v−α1 (log v1)
2 + v−α2 (log v2)

2

(v−α1 + v−α2 − 1) }.

We note that there are constants k1, k2 > 0 and small γ > 0 such that the following inequalities

hold for all vi ∈ (0, 1), i = 1, 2 and all α > 0:

| log vi| ≤ k1v
−γ
i , 0 ≤ log(v−α1 + v−α2 − 1) ≤ k2(v

−γ
1 + v−γ2 ), 0 ≤ v−αi

v−α1 + v−α2 − 1 ≤ 1.

The remaining verifications of the conditions in Propositions 4.2 and 4.3 for the Clayton copula are

very similar to those for the Gaussian copula and are omitted due to space limitations.

6 Conclusions and Extensions

In this paper, we have studied temporal dependence properties of a class of stationary semiparamet-

ric Markov time series models; a member of this class is completely characterized by a parametric

copula and a nonparametric marginal distribution. We have proposed simple estimators of the

unknown marginal distribution and the copula dependence parameter, and have established their

large sample properties under easily verifiable conditions. In addition, we have demonstrated that

features of the transition distribution of models in this class such as the (nonlinear) conditional

moment and conditional quantile functions can be easily estimated and their asymptotic properties

can be easily established from those of the estimators (Gn(·), α̃).
As this class of semiparametric Markov models is relatively new, much work remains to be done.

We now list a few of them, some of which will be addressed in other papers.

α∗ on the boundary: The results established in this paper can be used to construct tests

for the correct density forecasts and for the serial independence of a time series that are robust

to misspecification of the marginal distribution, see Chen and Fan (2003). Regarding tests for the

serial independence of a time series, one limitation of the asymptotic results obtained in this paper

is due to Condition A1(i): the true parameter value α∗ is in the interior of the parameter space. If

a parametric copula is such that it equals to the independence copula when the parameter takes its

value on the boundary of the parameter space, then our Proposition 4.3 is not applicable. In this

case, one may establish the limiting distribution result by following Andrews’ (2001) approach.

Efficient estimation: For a bivariate copula model with i.i.d. observations, Genest andWerker

(2001), Klaassen and Wellner (2001) have shown that the two-step estimator is generally inefficient

unless the copula is the Gaussian copula or the independence copula. Intuitively, the inefficiency

results from the two step nature of the estimator and the use of the inefficient empirical distribution
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function in the first step. Recently, Chen and Fan (2002) and Gagliardini and Gourieroux (2002b)

have independently considered the semiparametric efficient estimation of the copula parameter. For

i.i.d. multivariate observations, Chen and Fan (2002) show that the sieve MLE joint estimation of

the copula parameter and the unknown marginals are semiparametrically efficient. We expect that

their result remains valid for copula-based semiparametric Markov time series models considered

in this paper.

Choice of copula: An important issue faced by an applied researcher interested in using the

class of semiparametric copula-based time series models is the choice of an appropriate parametric

copula. In different contexts, (1) Chen, et al. (2003) propose two simple tests for the correct

specification of a parametric copula in the context of modeling the contemporaneous dependence of

multivariate time series10 and of the innovations of univariate GARCH models used to filter each

univariate time series; (2) Chen and Fan (2004) establish pseudo-likelihood ratio tests for selection

of parametric copula models for multivariate i.i.d. observations under copula misspecification.

Extensions of these tests to time series models considered in this paper will be addressed in a

separate paper.

Semiparametric copula: We note that the parametric specification of the copula function

does rule out some choices of Λ1(·) and Λ2(·) in the semiparametric regression transformation
models described in Section 2. For example, Gagliardini and Gourieroux (2002a) have proposed

a class of stationary Markov duration time series models with proportional hazard. Their class

of models belongs to the regression transformation model (2.7) with Λ1(Yt) = log(Λ0(Yt)) where

Λ0(Yt) is a baseline cumulated hazard, Λ2(Yt−1) = log( 1
a(Yt−1)), σ(Yt−1) = 1 and εt has a Gompertz

distribution (i.e., log of standard exponential). Their paper allows for Λ0(Yt), a(Yt−1) to be fully

nonparametric, which leads to a semi-nonparametric specification of the copula density function via

the following relation: c(G∗(y0),G∗(y1)) = fε(Λ1(y1)−Λ2(y0))×Λ01(y1)/g∗(y1). See also Gagliardini
and Gourieroux (2002b) and Gagliardini and Gourieroux (2003). We are currently extending our

analysis to allow for semiparametric specification of the copula function such as the Archimedian

copulas.

Markov processes of higher order: The results in this paper can be extended to copula-

based semiparametric Markov processes of any finite order. For modeling higher order Markov

processes, the parametric copula approach has an additional appealing feature. That is, the finite

dimensional distribution of such processes depends on nonparametric functions of only one dimen-

sion and hence achieves dimension reduction. This is particularly useful when the dimension is

high due to the curse of dimensionality associated with fully nonparametric modeling.

10Fermanian (2003) has proposed another copula specification test in this context.
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Appendix: Technical Proofs

Proof. (Proposition 2.1) First, Assumption 1 with aperiodic copula density function c and

conditions in (i) imply that the Markov process {Ut} satisfies all the conditions for theorem 5.2 in

Down, et al. (1995), hence {Ut} is geometric ergodic. This and the definition of beta-mixing imply
that {Ut} is beta-mixing with the exponential decay rate.

Second, Assumption 1 with aperiodic copula density function c and conditions in (ii) imply that

the Markov process {Ut} satisfies all the conditions for theorem 3.6 in Jarner and Roberts (2001),

hence {Ut} is ergodic with the polynomial decay rate. This and the definition of beta-mixing imply
that {Ut} is beta-mixing with the polynomial decay rate.

Since G∗() is a continuous probability distribution, and by the definition of beta-mixing, {Yt}
is beta-mixing with certain decay rate as long as {Ut} is beta-mixing with the same decay rate.
Hence we obtain the results (i) and (ii).

Proof. (Lemma 4.1) For result (1), we first consider the class of functions { 1
w(v)I(Ut ≤ v) :

v ∈ (0, 1/2]}. Denote F (Ut) ≡ supv∈(0,1/2]
¯̄̄
1

w(v)I(Ut ≤ v)
¯̄̄
as the envelop function. Since 1

w(v) is

decreasing in v ∈ (0, 1/2], we have F (Ut) ≤ 1
w(Ut)

. Hence E[{F (Ut) log[1 + F (Ut)]}] < ∞ by the

assumption on w(·) and that {Ut} is uniformly distributed over (0, 1). Now we can apply Rio’s

(1995, page 924) theorem 1 and application 5, and obtain
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
= oa.s.(1) for any

fixed v ∈ (0, 1/2]. Now for any small ε > 0, we form a grid of points v0 = 0 < v1 < ... <

vm = 1/2 such that Pr{ 1
w(v)I(Ut ≤ v) : v ∈ (vi, vi+1)} < ε for each i ∈ {0, 1, ...,m}. Then

supv∈(0,1/2]
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
≤ maxi

¯̄̄
{ eUn(vi)− vi}/w(vi)

¯̄̄
+ ε. Hence

lim supn{supv∈(0,1/2]
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
} ≤ ε almost surely. By taking a sequence of small εm → 0,

we see that lim supn{supv∈(0,1/2]
¯̄̄
{ eUn(v)− v}/w(v)

¯̄̄
} = 0 almost surely. Hence { 1

w(v)I(Ut ≤ v) :

v ∈ (0, 1/2]} is a Glivenko-Cantelli class. To show that { 1
w(v)I(Ut ≤ v) : v ∈ (1/2, 1)} is also a

Glivenko-Cantelli class, we note that 1
w(v) is symmetric about 1/2, decreasing in v ∈ [0, 1/2], andR 1

0
1

w(v)dv < ∞. As a result, it suffices to show that { 1
w(v) [1 − I(Ut ≤ v)] : v ∈ (1/2, 1)} is a

Glivenko-Cantelli class, which can be established in the same way as that for v ∈ (0, 1/2].
For result (2), by the same reasoning as above, it suffices to show that { 1

w(v)I(Ut ≤ v) : v ∈
(0, 1/2]} is a Donsker class. Again by the assumption on w(·), we have that the envelop function
F (Ut) ≤ 1

w(Ut)
. Also by the assumption on w(·) and that {Ut} is stationary β-mixing and Ut is a

uniform (0, 1) random variable, we have either E[F (Ut)]
2γ <∞ with γ > 1 for β-mixing with the

polynomial decay, or E{[F (Ut)]
2 log[1+F (Ut)]} <∞ for β-mixing with the exponential decay. Now

we can apply theorem 1 in Doukhan, et al. (1995) to conclude that { 1
w(v)I(Ut ≤ v) : v ∈ (0, 1/2]}

is a Donsker class.

In the following let µn(f) ≡ 1
n−1

Pn
t=2[f(Yt−1, Yt) − Ef(Yt−1, Yt)] be the empirical process

indexed by f .

Proof. (Proposition 4.2) Notice that by Assumption 1 and condition (C3) and Lemma 4.1, we
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have ||Gn −G∗||G = op(1) for the weight function w(·) stated in condition (C5). Under condition
(C1), eα solves infα∈A eQ(α), where

eQ(α) = { 1
n

nX
t=1

lα(Gn(Yt−1), Gn(Yt), α))}0{ 1
n

nX
t=1

lα(Gn(Yt−1), Gn(Yt), α))},

and α∗ solves infα∈AQ(α), where

Q(α) = {E[lα(G∗(Yt−1),G∗(Yt), α))]}0{E[lα(G∗(Yt−1), G∗(Yt), α))]}.

Again under conditions (C1) and (C2.i), it suffices to show that

sup
α∈A

|| 1
n

nX
t=1

lα(Gn(Yt−1), Gn(Yt), α)−E[lα(G
∗(Yt−1), G∗(Yt), α)]|| = op(1)

First by conditions (C2), (C3) and (C5), and Assumption 1,

sup
α∈A

|| 1
n

nX
t=1

{lα(Gn(Yt−1), Gn(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), α)}||

≤ 1

n

nX
t=1

sup
α∈A

||lα(Gn(Yt−1), Gn(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), α)||

=
1

n

nX
t=1

sup
α∈A

||
2X

j=1

lα,j(Gη(Yt−1), Gη(Yt), α)[Gn(Yt−2+j)−G∗(Yt−2+j)]||

≤
2X

j=1

Ã
1

n

nX
t=1

sup
α∈A,G∈Gδ

{|lα,j(G(Yt−1), G(Yt), α)|w(G∗(Yt−2+j))}
!
× ||Gn −G∗||G

= op(1).

It remains to show that

(*) sup
α∈A

|| 1
n

nX
t=1

lα(G
∗(Yt−1),G∗(Yt), α)−E[lα(G

∗(Yt−1), G∗(Yt), α)]|| = op(1)

Under conditions (C1.i) and (C2.i), we know that for any ε > 0, there exists δ > 0 and m finite

integers such that {α1, ..., αm} forms a δ-covering of A, and

sup
α∈A,||α−αi||≤δ

||lα(G∗(Yt−1), G∗(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), αi)|| ≤ ε

sup
α∈A,||α−αi||≤δ

||E{lα(G∗(Yt−1), G∗(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), αi)}|| ≤ ε.

Hence,

sup
α∈A,||α−αi||≤δ

|| 1
n

nX
t=1

{lα(G∗(Yt−1), G∗(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), αi)}|| ≤ ε

sup
α∈A,||α−αi||≤δ

||µn (lα(G∗(Yt−1), G∗(Yt), α))− µn (lα(G
∗(Yt−1), G∗(Yt), αi)) || ≤ 2ε.
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Under conditions (C3) and (C4), we have by theorem 1 and application 5 in Rio (1995),

max
1≤i≤m

||µn (lα(G∗(Yt−1), G∗(Yt), αi)) || = op(1).

Hence (*) is valid.

Recall that ||G−G∗||G ≡ supy |{G(y)−G∗(y)}/w(G∗(y))| where w(·) satisfies the condition in
Lemma 4.1(1). In the following we also denote ||G−G∗||G,w2 ≡ supy |{G(y)−G∗(y)}/w2(G∗(y))|
where w2() satisfies the condition in Lemma 4.1(2).

Lemma A.1: Suppose Assumption 1, conditions A1 - A3, A4 or A4’, and the followings hold:

(a) uniformly over (α,G) ∈ Fδ,

µn (lα(G(Yt−1), G(Yt), α)− lα(G
∗(Yt−1),G∗(Yt), α∗)) = op(n

−1/2),

(b) uniformly over (α,G) ∈ Fδ with ||G−G∗||G,w2 = Op(n
−1/2),¯̄̄̄

¯ E{lα(G(Yt−1), G(Yt), α)}−E{lα,α(Ut−1, Ut, α
∗)[α− α∗]}

−P2
j=1E{lα,j(Ut−1, Ut, α

∗)[G(Yt−2+j)−G∗(Yt−2+j)]}

¯̄̄̄
¯

= o(||α− α∗||) + o(||G−G∗||G,w2).

Then: α̃− α∗ = B−1A∗n + op(n
−1/2).

Proof. By condition A1(i) and the first order condition, we have

1

n− 1
nX
t=2

lα(Gn(Yt−1), Gn(Yt); α̃) = 0.

In the following we denote Z = (Yt−1, Yt). By condition (a) we have:

EZ [lα(Gn(Yt−1), Gn(Yt), eα)] + µn(lα(G
∗(Yt−1),G∗(Yt), α∗)) = op(n

−1/2).

By condition (b) we have uniformly over (α,G) ∈ Fδ with ||G−G∗||G,w2 = Op(n
−1/2),

EZ{lα,α(Ut−1, Ut, α
∗)[eα− α∗]}+

2X
j=1

EZ{lα,j(Ut−1, Ut, α
∗)[Gn(Yt−2+j)−G∗(Yt−2+j)]}

+o(||eα− α∗||) + o(||Gn −G∗||G,w2) + µn(lα(G
∗(Yt−1), G∗(Yt), α∗))

= op(n
−1/2).

Since ||Gn −G∗||G,w2 = Op(n
−1/2) and ||eα− α∗|| = op(1) by condition A1(iv), we have

−EZ{lα,α(Ut−1, Ut, α
∗)}[eα− α∗] + op (||eα− α∗||) = A∗n + op(n

−1/2)

By conditions A1(i)(iii), A4 or A4’, and the definition of A∗n, applying theorem 1 of Doukhan, et

al. (1995), we have
√
nA∗n → N(0,Σ). Now condition A1(ii) implies for any fixed λ 6= 0, all eα with

||eα− α∗|| = op(1),

√
nλ0[eα− α∗] +

√
n× op

¡|λ0[eα− α∗]|¢ = √nλ0B−1A∗n + op(1),
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which could hold only if
√
n|λ0[eα−α∗]| is bounded in probability since√nλ0B−1A∗n → N(0, B−1ΣB−1).

Thus we obtain
√
n(eα− α∗) =

√
nB−1A∗n + op(1).

Lemma A.2: Condition (a) is implied by Assumption 1, conditions A1-A3, A4 or A4’, A5-A6.

Proof. We first show that {lα(G(Yt−1),G(Yt), α) : (α,G) ∈ Fδ} is a Donsker class by applying theo-
rem 1 of Doukhan, et al. (1995). Define the envelop function F (Yt−1, Yt) = sup(α,G)∈Fδ |lα(G(Yt−1), G(Yt), α)|.
Then EZ{[F (Yt−1, Yt)]2γ} <∞, γ > 1 by condition A4(i)(iii) for beta mixing with polynomial de-

cay rate, or EZ{[F (Yt−1, Yt)]2 log[1 + F (Yt−1, Yt)]} < ∞ by condition A4’(i)(iii) for beta mixing

with exponential decay rate. By condition A3,

|lα(G(Yt−1), G(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), α∗)|

≤ |lαα(Gη(Yt−1),Gη(Yt), αη)| × ||α− α∗||
+|lα,1(Gη(Yt−1), Gη(Yt), αη)w(G

∗(Yt−1))| × ||G−G∗||G
+|lα,2(Gη(Yt−1), Gη(Yt), αη)w(G

∗(Yt))| × ||G−G∗||G
≤ { sup

(αη ,Gη)∈Fδ
|lαα(Gη(Yt−1), Gη(Yt), αη)|} × ||α− α∗||

+{ sup
(αη,Gη)∈Fδ

|lα,1(Gη(Yt−1), Gη(Yt), αη)w(G
∗(Yt−1))|} × ||G−G∗||G

+{ sup
(αη,Gη)∈Fδ

|lα,2(Gη(Yt−1), Gη(Yt), αη)w(G
∗(Yt))|} × ||G−G∗||G .

Hence by conditions A5 and A6,

logN[] (ε, {lα(G(Yt−1), G(Yt), α) : (α,G) ∈ Fδ}, L2(P ))
≤ K1 logN (ε, {α ∈ A : ||α− α∗|| ≤ δ}, || · ||)

+K2 logN (ε,Gδ, || · ||G) ≤ const.× {ln(1
ε
) +

1

ε
}

this and condition A4(i)(iii) or A4’(i)(iii) imply that all the conditions for Theorem 1 of Doukhan,

et al. (1995) is satisfied, hence {lα(G(Yt−1), G(Yt), α) : (α,G) ∈ Fδ} is a Donsker class, moreover
for any δn → 0,

sup
EZ [lα(G,α)−lα(G∗,α∗)]2<δn

µn (lα(G(Yt−1), G(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), α∗)) = op(n

−1/2).

Under conditions A5 and A6, EZ{|lα(G(Yt−1), G(Yt), α)− lα(G
∗(Yt−1), G∗(Yt), α∗)|2}→ 0 as ||α−

α∗||→ 0 and ||G−G∗||G → 0. This implies condition (a).

Lemma A.3: Condition (b) is implied by conditions A1(i)(iv), A2, A3, A5 and A6.

Proof. By conditions A1(i) and A2, lα(G(Yt−1), G(Yt), α) is continuously Gateaux differentiable
in a neighborhood of (α∗,G∗). By Proposition A5.1.E of Bickel, et al. (1993, page 455), condition
(b) is implied by: (*) for some small � > 0,

sup
n ¯̄̄

dEZ{lα(Ut−1+η4G(Yt−1),Ut+η4G(Yt),α∗+η4α)}
dη

¯̄̄
: ||4α||+ ||4G||G,w2 ≤ 1, |η| ≤ �

o
<∞.
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By condition A3,¯̄̄̄
dEZ{lα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)}
dη

¯̄̄̄
=

¯̄̄̄
EZ

µ
dlα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)

dη

¶¯̄̄̄
≤ EZ

µ¯̄̄̄
dlα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)

dη

¯̄̄̄¶
≤ EZ (|lαα(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)|)× ||4α||
+EZ (|lα,1(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α

∗ + η4α)w2(G
∗(Yt−1))|)× ||4G||G,w2

+EZ (|lα,2(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α
∗ + η4α)w2(G

∗(Yt))|)× ||4G||G,w2
By Holder inequality,

EZ (|lα,1(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α
∗ + η4α)w2(G

∗(Yt−1))|)

≤
q
EZ{|lα,1(Ut−1 + η4G(Yt−1), Ut + η4G(Yt), α∗ + η4α)w(Ut−1)|}2

s
E

·
w2(Ut−1)
w(Ut−1)

¸2
.

Hence (*) is satisfied given conditions A5 and A6.

Proof. (Proposition 4.3) Result (1) follows directly from Lemmas A.1, A.2 and A.3, Lemma

4.1 and Proposition 4.2. Result (2) follows from result (1) and conditions A1 and A4 (or A4’) and

a standard central limit theorem for stationary beta-mixing processes.
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[6] Bouyé, E. and M. Salmon (2002), “Dynamic Copula Quantile Regression and Tail Area Dy-

namic Dependence in Forex Markets,” Manuscript, Financial Econometrics Research Center.

[7] Bradley, R. (1986), “Basic Properties of Strong Mixing Conditions,” in Dependence in Proba-

bility and Statistics, Eberlein, E. and M.S. Taqqu (eds.), page 165-192. Birkhauser: Boston.

31



[8] Chen, X. and Y. Fan (2002), “Efficient Semiparametric Estimation of Copulas,” Manuscript,

New York University and Vanderbilt University.

[9] Chen, X. and Y. Fan (2003), “Evaluating Density Forecasts via the Copula Approach,” Forth-

coming in Finance Research Letters.

[10] Chen, X. and Y. Fan (2004), “Pseudo-Likelihood Ratio Tests for Model Selection in Semipara-

metric Multivariate Copula Models,” Manuscript, NYU and Vanderbilt University.

[11] Chen, X., Y. Fan and A. Patton (2003), “Simple Tests for Models of Dependence Between Mul-

tiple Financial Time Series, with Applications to U.S. Equity Returns and Exchange Rates,”

Manuscript, London School of Economics.

[12] Chen, X., L.P. Hansen and M. Carrasco (1998), “Nonlinearity and Temporal Dependence”,

working paper, University of Chicago.

[13] Chen, X., O. Linton and I. van Keilegom (2003), “Estimation of Semiparametric Models when

the Criterion Function is not Smooth,” Econometrica, 71, 1591-1608.

[14] Cherubini, U. and E. Luciano (2002), “Multivariate Option Pricing With Copulas,” forthcom-

ing in Applied Mathematical Finance.

[15] Costinot, A., T. Roncalli, and J. Teiletche (2000): “Revisiting the Dependence Between Fi-

nancial Markets with Copulas,” Working Paper, Crédit Lyonnais.

[16] Darsow, W., B. Nguyen and E. Olsen (1992), “Copulas and Markov Processes,” Illinois Journal

of Mathematics 36, 600-642.

[17] Davydov, Y. (1973), “Mixing Conditions for Markov Chains,” Theory of Probability and Its

Applications XVIII, 312-328.

[18] Devroye, L. (1986), Non-Uniform Random Variate Generation, Springer-Verlag, New York.

[19] Doukhan, P., P. Massart, and E. Rio (1995), “Invariance Principles for Absolutely Regular

Empirical Processes,” Ann. Inst. Henri Poincare 31, 393-427.

[20] Down, D., S. P. Meyn, and R. L. Tweedie (1995), “Exponential and Uniform Ergodicity of

Markov Processes,” The Annals of Probability 23, 1671-1691.

[21] Duffie, D. and J. Pan (1997), “An Overview of Value at Risk,” Journal of Derivatives, 4, 7-49.

[22] Embrechts, P. , A. McNeil, and D. Straumann (2002), “Correlation and Dependence Properties

in Risk Management: Properties and Pitfalls,” in M. Dempster, ed., Risk Management: Value

at Risk and Beyond, Cambridge University Press, 176-223.

[23] Embrechts, P. , A. Hoing, and A. Juri (2003), “Using Copulae to Bound the Value-at-Risk for

Functions of Dependent Risks,” Finance and Stochastics 7(2), 145-167.

[24] Engle, R. and S. Manganelli (2002), “CAViaR: Conditional Autoregressive Value ar Risk by

Regression Quantiles,” forthcoming in Journal of Business and Economic Statistics.

32



[25] Fermanian, J.-D. (2003), “Goodness of Fit Tests for Copulas”, mimeo, CREST.

[26] Frees, Edward W. and E. A. Valdez (1998), “Understanding Relationships Using Copulas,”

North American Actuarial Journal 2, 1-25.

[27] Frey, R. and A. McNeil (2001), “Modeling Dependent Defaults,” Working Paper, Department

of Mathematics, ETHZ.

[28] Gagliardini, P. and C. Gourieroux (2002a), “Duration Time Series Models with Proportional

Hazard,” Working paper, CREST and University of Toronto.

[29] Gagliardini, P. and C. Gourieroux (2002b), “Efficient Nonparametric Estimation of Models

With Nonlinear Dependence,” Working paper, CREST and University of Toronto.

[30] Gagliardini, P. and C. Gourieroux (2003), “Constrained Nonparametric Dependence With

Application to Finance and Insurance,” Working paper, CREST and University of Toronto.

[31] Genest, C., K. Ghoudi, and L. Rivest (1995), “A Semiparametric Estimation Procedure of

Dependence Parameters in Multivariate Families of Distributions,” Biometrika 82 (3), 543-

552.

[32] Genest, C. and B. Werker (2001), “Conditions for the Asymptotic Semiparametric Efficiency

of an Omnibus Estimator of Dependence Parameters in Copula Models,” Working paper.

[33] Gourieroux, C. and J. Jasiak (2002), “Value at Risk,” Manuscript, University of Toronto.

[34] Granger, C.W.J., T. Terasvirta and A. Patton (2003): “Common Factors in Conditional Dis-

tributions”, forthcoming in Journal of Econometrics.
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Figure 1: Gaussian Copula 
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Figure 2a: Clayton Copula, G = normal 
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Figure 2b: Clayton Copula, G = t (df=3) 


