
Financial Applications of Copula Functions
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Abstract

Copula functions have been introduced recently in finance. They are a general tool to construct
multivariate distributions and to investigate dependence structure between random variables. In this
paper, we show that copula functions may be extensively used to solve many financial problems. As
examples we show how to them to monitor the market risk of basket products, to measure the credit risk
of a large pool of loans and to compute capital requirements for operational risk.
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1 Introduction

One of the main issues in risk management is the aggregation of individual risks. This problem can be
easily solved or at least discarded by assuming that the random variables modelling individual risks are
independent or are only dependent by means of a common factor, so that we can reduce to the case of
independent variables, by eventually adding one new variable (describing the common factor) to the set of
the risks.

The problem becomes much more involved when one wants to model fully dependent random variables or,
when one does not know what the exact joint distribution is, to produce a large set of dependence between
the given individual risks. Again a classic solution is to assume a Gaussian behavior of the vector of risks
(with some given covariance matrix); however, all risks are not likely to be well described by a Gaussian
distribution – think of the distribution of the loss of a pool of credit which is highly asymmetric – or the
Normal joint distribution may fail to catch some exotic key features of the dependence of the studied risks
– e.g. a tail dependence. Besides, we stress that we do not often have as much information on the joint
distribution as that on each separate risk.

A powerful and user-friendly tool to describe dependent risks is provided by the concept of copula. A
copula is nothing else but the joint distribution of a vector of uniform random variables. Since it is always
possible to map any vector of r.v’s into a vector of r.v’s with uniform margins, we are able to split the
margins of that vector and a digest of the dependence, which is the copula (that is roughly the meaning of
Sklar’s theorem). The concept of copula was introduced by Sklar [1959] and studied by many authors such
as Deheuvels [1979], Genest and MacKay [1986]. Details and complete references are provided by the
books of Nelsen [1999], Joe [1997] and also Hutchinson and Lai [1990].

With the concept of copula we are given plenty of families of functions (Student, Gumbel, Clayton, etc.)
that enable us to produce a richer dependence than the usual Gaussian assumption; and Sklar’s lemma tells
us how to impose one form of dependence between random variables with given margins. But we stress that
this does not give any hint on how to choose the dependence to input between the random variables, which
may be seen as a severe shortcoming of the copula approach. While the assumption of Gaussian dependence
can be considered as quite natural, we need now to motive any choice of a particular family of copulas, in
cases where it is not easy to decide because of the frequent lack of information on the dependence. Yet, in
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the practice of banks until now, the choice of the copula – when not purely arbitrary – is justified rather
by convenience and tractability arguments (Student and ‘Fraitly’ families are often easy to simulate in a
Monte-Carlo methodology) than a thorough analysis of the risks to be modelled.

The goal of this survey paper is to provide some simple applications of copulas for risk management from
an industrial point of view. First, we remind some basics about copulas. Then, some applications of copulas
for market risk, credit risk and operational risk are given. A special attention will be paid to credit risk
modelling since we think the applications of copulas have been the most successful in this field until now.
We will not lay the emphasis on the various concepts of dependence and correlations which were clarified in
a sparkling manner by Embrechts, McNeil and Straumann [2002].

2 Copula Functions

We will not provide a full mathematical treatment of the subject here and we refer interested readers to
Nelsen [1999], from which the following results are drawn. For short, we also choose to stick to the bivariate
case – but it is easy to generalize definitions to the n-dimensional case. Mathematically speaking, a function
C : [0, 1]2 → [0, 1] is a copula function if it fulfills the following properties:

1. C is ‘increasing’ in the sense that for 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1 we have

C ([u1, v1]× [u2, v2]) ≡ C(u2, v2)−C(u2, v1)−C(u1, v2) + C(u1, v1) ≥ 0;

2. C satisfies C (1, u) = C (u, 1) = u and C (0, u) = C (u, 0) = 0 for all u ∈ [0, 1].

Thus, we may interpret a copula function as a cumulative probability function of two uniform random
variables (U1, U2). Now let F1 and F2 be any two univariate distributions. It is obvious to show that

F (x1, x2) ≡ C (F1 (x1) , F2 (x2))

is a probability distribution, the margins of which are exactly F1 and F2. We say that it is a distribution
with fixed (or given) marginals. Conversely, Sklar proved in 1959 that any bivariate distribution F admits
such a representation and that the copula C is unique provided the margins are continuous.

To illustrate the idea behind the copula function, we can think about the bivariate Gaussian distribution.
To state that a random vector (X1, X2) is Gaussian is equivalent to state that:

1. the univariate margins F1 and F2 are Gaussian;

2. these margins are ‘linked’ by a unique copula function C (called the Normal copula) such that:

C (u1, u2; ρ) = Φ
(
φ−1 (u1) , φ−1 (u2) ; ρ

)

=
∫ u1

0

φ

(
φ−1 (u2)− ρφ−1 (u)√

1− ρ2

)
du

with φ the standard univariate Gaussian cumulative distribution and Φ (x1, x2; ρ) the bivariate Normal
cumulative function with correlation ρ.

A very important special case of Normal copula family is obtained with ρ = 0: it is the product copula
C⊥ (u1, u2) ≡ u1u2. Of course, two variables are independent if and only if their copula is the product
copula.

There exists many other copula families: most of them are obtained like the Normal family by inversion
from well known bivariate distributions – an example which is important in risk management is the Student
copula, that is the copula function of the bivariate Student−t distribution –, but we also know direct methods
to construct new copulas: the most famous family of this kind is no doubt the Archimedean copulas

Cψ(u1, u2) ≡ ψ−1 (ψ(u1) + ψ(u2))
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with ψ : [0, 1] → R+ a convex, continuous, decreasing function such that ψ(1) = 0. Again an important
example is the Gumbel copula where we set ψ(t) ≡ (− log t)θ with θ ≥ 1.

The copula decomposition may be used to extend univariate models to multivariate models. Let us
consider a simple example with two random variables. X1 and X2 are distributed according to an Inverse
Gaussian distribution and a Beta distribution. If we consider classic handbooks on multivariate distributions
([26] for example), it is difficult to find a bivariate distribution with such margins. Figure 1 corresponds
to a bivariate distribution with a Normal copula1. This example might be an illustration of a credit risk

Figure 1: An example of bivariate distribution with given marginals

modelling problem. X1 may be a default time and X2 a recovery rate. The dependence between the two
random variables are introduced through a copula function. The copula method is also very powerful from
an industrial point of view because

1. the risk can be split into two parts: the individual risks and the dependence structure between them,

2. and the dependence structure may be defined without reference to the modelling specification of indi-
vidual risks.

Because of this sequential approach, the copula framework enables in this way to solve some calibration
issues.

In the paper [13], the authors discuss many concepts of dependence and correlation. We remind here the
most important results. Let X = (X1, X2) be a bivariate random vector. We define the copula C 〈X1, X2〉
of the random variables X1 and X2 as the copula of the corresponding bivariate distribution F. Schweizer
and Wolff [1981] show that the copula function is invariant under strictly increasing transformations. It
means that if the functions h1 and h2 are strictly increasing, the copula of (h1 (X1) , h2 (X2)) is the same as
the copula of (X1, X2). Indeed, the copula C 〈X1, X2〉 may be viewed as the canonical measure of the
dependence between X1 and X2 in the sense that it is the minimal statistic of the dependence between X1

and X2.
1ρ is equal to 0.70%.
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One of the most useful dependence ordering is the concordance order. We say that the copula C1

is smaller than the copula C2 and we note C1 ≺ C2 if we verify that C1 (u1, u2) ≤ C2 (u1, u2) for all
(u1, u2) ∈ [0, 1]2. We can show that any copula function satisfy:

max (u1 + u2 − 1, 0) ≡ C− (u1, u2) ≤ C (u1, u2) ≤ C+ (u1, u2) ≡ min (u1, u2)

where the two bounds are respectively called the lower and upper Fréchet bound copulas. The bound copulas
correspond to the case where the random variables X1 and X2 are such that X2 is a monotonic function
f of X1. This function f is increasing if the copula is C+ and decreasing if the copula is C−. We notice
that the Normal copula corresponds to the copula functions C−, C⊥ and C+ when the parameter ρ takes
the respective values −1, 0 and 1 — the copula family is called comprehensive when it contains those three
copula functions. In some sense, copula functions are extensions of the linear dependence notion in the
Gaussian framework. That is why C− and C+ may be viewed as the most negative and positive dependence
structure. By analogy with the linear correlation, a copula function C is a negative dependence structure if
C− ≺ C ≺ C⊥ and a positive dependence structure if C⊥ ≺ C ≺ C+ — the random variables X1 and X2

are said respectively NQD or PQD (negative and positive quadrant dependent)2.

3 Market Risk Management

The copula methodology can be applied both to compute value-at-risk (VaR) and to perform stress testing.
The two approaches are explained in the following sections. Moreover, we consider the problem of managing
the risk of dependence for exotic basket equity or credit derivatives.

3.1 Non-Gaussian Value-at-risk

As noted by Embrechts, McNeil and Straumann [2002], the correlation is a special case through all
measures that are available to understand the relationships between all the risks. If we assume a Normal
copula3, the empirical correlation is a good measure of the dependence only if the margins are Gaussian. To
illustrate this point, we can construct two estimators:

1. The empirical correlation ρ̂;

2. The canonical correlation ρ̂om obtained as follows: the data are mapped to empirical uniforms and
transformed with the inverse function of the Gaussian distribution. The correlation is then computed
for the transformed data4.

The advantage of the canonical measure is that no distribution is assumed for individual risks.
Indeed, it can be shown that a misspecification about the marginal distributions (for example to assume
Gaussian margins if they are not) leads to a biased estimator of the correlation matrix (see [11] for numerical
experiments). This is illustrated by the following example for asset returns. The database of the London
Metal Exchange5 is used and the spot prices of the commodities Aluminium Alloy (AL), Copper (CU), Nickel
(NI), Lead (PB) and the 15 months forward prices of Aluminium Alloy (AL-15), dating back to January 1988,
are considered. The two correlation measures of asset returns are reported in Tables 1 and 2. We observe
some significant differences between the two correlation matrices6.

The previous algorithm to compute ρ̂om is derived from the maximization of the log-likelihood function
with empirical margins. If the copula function is Student with ν degrees of freedom, the maximization of the
log-likelihood function implies to solve a non-linear matrix equation. This can be done by means of Jacobi
iterations (see [5]):

2Note however that ≺ is a partial ordering. So, there are copulas which may not be comparable to the product copula.
3In the remaining of the article, we use the term ‘correlation matrix’ to refer to the matrix of the parameters of the Normal

or Student copula even if this is a misuse.
4ρ̂om is also called the ‘omnibus estimator’. It is consistent and asymptotically normally distributed (Genest, Ghoudi and

Rivest [1995]).
5The database is available on the web site of the LME http://www.lme.co.uk.
6The standard errors are not reported here. However, the correlations of Table 2 and Table 3 are in italics if they are

significantly different from Table 1 at 5% confidence level.
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AL AL-15 CU NI PB
AL 1.00 0.8193 0.4435 0.3628 0.3312

AL-15 1.00 0.3893 0.3358 0.2975
CU 1.00 0.3693 0.3121
NI 1.00 0.3089
PB 1.00

Table 1: Correlation matrix ρ̂ of the LME data

AL AL-15 CU NI PB
AL 1 0.8418 0.4850 0.3790 0.3525

AL-15 1 0.4262 0.3390 0.3133
CU 1 0.4037 0.3524
NI 1 0.3292
PB 1

Table 2: Correlation matrix ρ̂om of the LME data

1. Let ρ̂0 be the estimate of the ρ matrix for the Normal copula. We note n the dimension of the copula and
m the number of observations. ûj,i is the value taken by the ith empirical margin for the observation
j.

2. ρ̂k+1 is obtained using the following equation:

ρ̂k+1 =
1
m

(
ν + n

ν

) m∑

j=1

ςjς
>
j

1 + ς>j ρ̂−1
k ςj/ν

where ςj =
[

t−1
ν (ûj,1) · · · t−1

ν (ûj,n)
]>.

3. Repeat the second step until convergence — ρ̂k+1 = ρ̂k (:= ρ̂∞).

Even if we assume that the margins are Gaussian, we will show that the choice of the dependence structure
has a big impact on the VaR computation of a portfolio. If we consider that the dependence of the LME
data is a Student copula with one degree of freedom, we obtain the matrix of parameters given in Table 3.

The value-at-risk with a confidence level equal to α corresponds to the quantile of the loss distribution.
We have VaR (α) = − inf {x : Pr {PnL (t;h) ≤ x} ≥ 1− α}. Let us consider a linear equity portfolio with a
fixed allocation θ =

[
θ1 · · · θn

]>. The PnL of the portfolio for a given holding period h is PnL (t;h) =∑n
i=1 θiPi (t) ri (t;h) where Pi (t) and ri (t; h) are respectively the price at time t and the return between t

and t+h of the asset i. For linear equity portfolio, we may assume that the risk factors are the return of the
assets. The computation of the value-at-risk will then be sensible to the statistical modelling of the random
variables ri (t;h). We consider three different portfolios7:

AL AL-15 CU NI PB
P1 1 1 1 1 1
P2 −1 −1 −1 1 1
P3 2 1 −3 4 5

For these three portfolios, we assume that the margins are Gaussian and compare the value-at-risk under
the assumption of Normal copula and Student copula with ν = 1. For low confidence levels (90% and 95%),
the Student copula gives a smaller VaR than the Normal copula (see Tables 4 and 5). For high confidence
levels, we obtain opposite results. Now, if we use a Normal copula but with Student-t4 margins, we obtain
Table 6. These three tables show the importance of modelling of the margins and the copula function.

7A negative number corresponds to a short position.
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AL AL-15 CU NI PB
AL 1 0.8183 0.3256 0.2538 0.1888

AL-15 1 0.2706 0.2225 0.1634
CU 1 0.2668 0.2184
NI 1 0.1944
PB 1

Table 3: Correlation matrix ρ̂om with Student copula (ν = 1) of the LME data

90% 95% 99% 99.5% 99.9%
P1 7.340 9.402 13.20 14.65 17.54
P2 4.047 5.176 7.318 8.107 9.753
P3 13.96 17.90 25.21 27.92 33.54

Table 4: Gaussian margins and Normal copula

If we compare these values at risk with the historical VaR (which is reported in Table 7), we notice that the
Gaussian VaR underestimates systematically the risk for a confidence level greater than 95%. That explains
why that parametric (or Gaussian) VaR are not very often used by international banks. Nevertheless, the
copula framework is likely to lead in the near future to more realistic parametric or semi-parametric8 VaR
which will be adopted by practitioners.

Remark 1 No analytical formula is generally available for the VaR computation with a copula framework.
The computation is also carried out by simulations. So, we can treat non linear portfolios without any further
difficulties.

3.2 Stress Testing

To compute regulatory capital for market risks, a bank may use an internal model. But in this case, it must
satisfy some criteria and it must be validated by the supervisory authority. One of these criteria concerns
stress testing which are defined in the following way in the document [1] of the Basel Committee on Banking
Supervision:

[...] Banks’ stress scenarios need to cover a range of factors that can create extraordinary losses
or gains in trading portfolios, or make the control of risk in those portfolios very difficult. These
factors include low-probability events in all major types of risks, including the various components
of market, credit, and operational risks.

Generally speaking, a problem for the bank is to justify stress testing programs to their home regulator.
That is why banks use very often historical scenarios. Some banks have developed more sophisticated stress
scenarios based on extreme value theory. Since it is now familiar to practitioners, we give here a very brief
description. Let X be a risk factor with probability distribution F. We would like to build risk scales for
extreme events. Suppose that the portfolio is short with respect to X. The underlying idea is then to find
a scenario x such that P {X > x} is very low. One of the issue is to define what is a low probability. In
this case, risk managers prefer to use the concept of ‘return time’. Gumbel [1958] defines it in the following
way:

[...] Consider first a discontinuous variate as in the case of the classical die, from which so many
problems of the calculus of probability arose. For an unbiased die, the probability that a certain
point occurs is 1

6 . Therefore, we may expect to get this point, in the long run and on the average,
once in T = 6 trials. For a continuous variate, there is no probability for a certain value x, but
only a density of probability. However, there is a probability 1− F (x) of a value to be equalled

8In this case, the dependence of the risks corresponds to a parametric copula function whereas the distribution of the risks
are the empirical distributions.
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90% 95% 99% 99.5% 99.9%
P1 5.797 8.112 13.36 15.65 20.15
P2 3.812 5.531 9.801 11.65 16.34
P3 13.45 19.32 34.15 40.77 54.95

Table 5: Gaussian margins and Student-t1 copula

90% 95% 99% 99.5% 99.9%
P1 6.593 8.885 14.33 16.98 23.96
P2 3.778 5.021 7.928 9.351 13.42
P3 12.80 17.13 27.52 32.89 49.09

Table 6: Student-t4 margins and Normal copula

or exceeded by x. Its reciprocal

t (x) =
1

1− F (x)

is called the return period. It is the number of observations such that, on the average, there is
one observation equalling or exceeding x. Obviously, the return period increases with the variate.

In order to find the scenario x related to a given return time t, we have to define the distribution F
and more particularly to estimate the tail of the distribution. We prefer then to work with the extreme
order statistic Xn:n. The return time associated to the event {Xn:n > x} is t = n (1− Fn:n (x))−1. We
deduce that x = F−1

n:n

(
1− nt−1

)
. One generally uses the Generalized Extreme Value distribution with a

block-componentwise method to estimate Fn:n. Let us consider the example of the risk factors CAC40 and
DowJones. Using daily returns and n fixed to 22 trading days, we obtain the results in Table 8.

How to build now multivariate stress scenarios in the same way ? A rough solution is to collect univariate
stress scenarios. For example, the return times of a fall of 10% of the CAC40 and a fall of 10% of the DowJones
are respectively 5.090 and 4.959 years. It comes out that the return time of the simultaneous fall of 10%
of the CAC40 and 10% of the DowJones is 5.09 years if the risk factors are perfectly correlated but 304.12
years if they are independent. Collecting univariate stress scenarios with the same return time has no
sense if the copula function is not C+.

The extension to the multivariate case may be a difficult issue if we do not consider a copula framework.
Indeed, any copula function C? such that C? (ut

1, u
t
2) = Ct

? (u1, u2) for all t > 0 can be used to construct
a bivariate extreme value distribution (Deheuvels [1978]). Such copula functions are called extreme value
copulae (Joe [1997]). For example, the Gumbel copula of the first section is an extreme value copula.

Let X and Y be two risk factors. Suppose that the portfolio is short both in X and Y . We have

t (x, y) =
n

Pr (Xn:n > x, Yn:n > y)

=
n

1− Fn:n (x)−Gn:n (y) + C? (Fn:n (x) ,Gn:n (y))

There is now a set S of solutions to achieve a given return time. If we denote xu and yu the corre-
sponding one-dimensional stress scenarios, the set of bivariate stress scenarios verifies that S (x, y; t) ⊂
{(x, y) : x ≤ xu, y ≤ yu}. If the copula is C+, we have

S+ (x, y; t) = {(x, yu) : x ≤ xu} ∪ {(xu, y) : y ≤ yu} .

However if the copula is C⊥, the set is

S⊥ (x, y; t) = {(x, y) : P (Xn:n > x)P (Yn:n > y) = P (Xn:n > xu) = P (Yn:n > yu)} .
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90% 95% 99% 99.5% 99.9%
P1 6.627 9.023 14.43 16.52 29.56
P2 3.434 5.008 8.946 11.28 16.24
P3 12.24 17.32 31.77 36.09 50.02

Table 7: Historical value at risk

Risk scales (daily variation)
for short positions (in %) for long positions (in %)

Return time (in years) CAC40 DowJones CAC40 DowJones
5 9.95 6.13 −9.93 −10.04
10 13.06 7.38 −12.85 −13.91
25 18.66 9.36 −17.95 −21.35
50 24.41 11.13 −23.01 −29.48
75 28.55 12.30 −26.59 −35.59
100 31.91 13.19 −29.44 −40.67

Table 8: Univariate stress scenarios

Because extreme value copulas satisfy C⊥ ≺ C ≺ C+, bivariate stress scenarios are between these two sets
for the general case. For example, using the previous example for CAC40 and DowJones, the set of bivariate
stress scenarios for a 5-year return time is reported in Figure 2. We use a Gumbel copula, the parameter of
which is estimated by a maximum-likelihood method.

We can extend the bivariate case to the multivariate case. However, it is very difficult to define explicitly
the set S (x1, . . . , xn; t). Nevertheless, the framework may be used to evaluate the severity of a given stress
scenario (given by home economists for example). In this case, it is a good tool to compare the strength of
stress scenarios and of course to quantify them.

3.3 Monitoring the Risk of the Dependence in Basket Derivatives

The pricing of derivatives generally involves some subjective parameters. This is the case for basket equity
or credit derivatives, which require to define the dependence function between the risk factors. To illustrate
that, let us consider a two-asset option in the equity market. We note S1 and S2 the asset prices, and
G (S1, S2) the payoff function of the European option. In the classic Black-Scholes model9, the price of this
option depends on the correlation parameter ρ between the asset returns, so that the trader has to set a
numerical value for ρ in the pricer. Nevertheless, the trader does not generally know what is exactly the
right value to input in the pricer, even if he performs some sophisticated statistics on historical data. From
a risk management point of view, we face to a parameter risk, which is slighty different from model risk
(Derman [2001], Rebonato [2001]):

It means that even if the model is the right model, there might be a mispricing risk due to
the fact that we do not use the correct value of the parameter.

In the case of European basket options and within the Black-Scholes model, Rapuch and Roncalli
[2001] have proved that if “∂2

1,2G is a nonpositive (resp. nonnegative) measure then the option price is
nonincreasing (resp. nondecreasing) with respect to ρ”. The risk manager may then use this proposition to
define a conservative value for ρ. If the model is not Black-Scholes any longer, the dependence parameter
is not ρ, but the copula function of the risk-neutral distribution. In this case, the previous result may be
generalized in the following way: “if the distribution ∂2

1,2G is a nonpositive (resp. nonnegative) measure then

9In this model, the asset prices are correlated geometric Brownian motions�
dS1 (t) = µ1S1 (t) dt + σ1S1 (t) dW1 (t)
dS2 (t) = µ2S2 (t) dt + σ2S2 (t) dW2 (t)

where E [W1 (t) W2 (t)] = ρt.
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Figure 2: Bivariate stress scenarios

the option price is nonincreasing (resp. nondecreasing) with respect to the concordance order Â”. The result
obtained in the Black-Scholes framework is then a particular case of this general result when the dependence
function is the Normal copula with parameter ρ.

What about more complicated basket derivatives ? Rapuch and Roncalli [2001] present an example
to show that previous results may not be easily generalized to multi-asset options, even if the model is
Black-Scholes. And the generalization may be more difficult if the product is path-dependent. It is then
very important to have tools to monitor the risk of the dependence function10. Nevertheless, we need to be
very careful with empirical evidence, in particular for high-dimensionnally basket derivatives.

We give now an example to illustrate the difficulty to manage this type of problem. We suppose that
the dependence function between the risk factors is the Normal copula with a correlation matrix Σ. Some-
times, traders prefer to replace Σ by a constant-correlation matrix 11 C (ρ), either because they have little
information of the dependence between risk factors (for example in credit derivatives), or because esti-
mated correlations are not stable in time (for example in multi-asset options). Moreover, especially for
high-dimensionnally basket derivatives, using a constant-correlation matrix C (ρ) and not a full-correlation
matrix Σ enables to reduce the number of parameters to be controlled. Nevertheless, we must avoid some
false ideas:

Fallacy 1 To get a conservative price, it is enough to find the maximum (or minimum) price in the set of
all C (ρ) matrices.

Fallacy 2 If the price is an increasing (resp. decreasing) function with respect to the parameter ρ, the price
is an increasing (resp. decreasing) function with respect to the concordance order. We may then take the
copula function C⊥ or C+ to get the conservative price12.

10like simulating correlation matrices (Davis and Higham [2000]).
11C (ρ) is a constant-correlation matrix or an A-correlation matrix if all non-diagonal elements is equal to ρ and if ρ ≥

−1/ (k − 1) where k is the dimension of the matrix C (ρ) (Tiit and Helemäe [1997]).
12Because the maximal element of the Normal copula for the set of all C (ρ) matrices is the Normal copula with the correlation
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To illustrate these two fallacies, we consider a ‘tranching’ of a credit risk product, that is a partition of the
total loss L. We consider J tranches defined in the following way :

L = min (L,K1) + min
(
(L−K1)

+
,K2

)
+

min
(
(L−K1 −K2)

+
,K3

)
+ . . . +


L−

J−1∑

j=1

Kj




+

And we suppose that the total loss L is defined by L = L1 · 1
{
L2 > L̄2

}
+ L3 · 1

{
L4 > L̄4

}
. The individual

losses Li are distributed according to the distribution LN (µi, σi), the dependence function between the
individual losses is a Normal copula with a correlation matrix Σ and the numerical value of the barriers L̄2

and L̄4 is 105. In order to limit the effect of the marginals, we take the same values for the parameters:
µi = 5 and σi = 0.5. First, we set Σ to the constant-correlation matrix C (ρ). In Figure 3, we report the net
present value13 of several tranches with respect to the parameter ρ. The relationship between the NPV and
the parameter ρ depends on the tranche. For an ‘equity-like’ tranche, it is decreasing whereas it is increasing
for a ‘senior-like’ tranche. Then, we calculate the net present value for the following full correlation matrix

Σ = Σ1 =




1
0.8 1
0.1 0.5 1
0.5 0.8 0.8 1




and we indicate the mean correlation in Σ1 — we note it ρm (Σ1). We point out that for the tranche
min

(
(L− 200)+ , 25

)
, the NPV with the Σ1 matrix is larger than the NPV with a C (ρ) matrix when ρ ≤

95%, but the biggest correlation value in Σ1 is 80% and the mean correlation ρm (Σ1) is 58.3%! Nevertheless,
the NPV calculated with the copula C+ is even larger than NPV (Σ1). If now we change slightly the
marginals, for example if σ4 is not equal to 0.5 but 1, we have a surprising result: NPV (C+) is smaller
than NPV (Σ1)! Now, we change the loss expression L = L1 · 1

{
L2 > L̄2

}
+ L3 · 1

{
L4 < L̄4

}
, but we keep

the same parameters values. For a ‘senior-like’ tranche min
(
(L− 200)+ , 50

)
, the net present value is not a

monotonic function with respect to ρ — see Figure 4. However, for a reasonable range, say ρ ∈ [0, 60%], the
net present value is almost constant. We may think that the effect of dependence is small for this tranche.
Taking the following full-correlation matrix

Σ = Σ2 =




1
0.5 1
0.1 0.2 1
0.5 0.0 0.1 1




and we find out that this not true.

Of course, it is a toy example. But, you can imagine that we may encounter same problems in some exotic
multi-asset options or high-dimensionally basket credit derivatives. Monitoring the dependence function is
then a challenge for the risk management (and the front office too).

4 Credit Risk Management

No doubt, one of the most popular application of copula functions in finance is credit risk modelling. From
the work of Li [29] to the important paper of Schönbucher and Schubert [37], there is now a big literature
on this subject, both from academics and professionals and dealing with risk management and pricing. Here
we first show that one can achieve in practice to compute the measure of the risk of a large pool of loans
in a copula framework, and then turn to the pricing of basket credit derivatives, which, like equity basket
exotic products, are very sensitive to the dependence between (the defaults of) the firms.

matrix parameters C (1) or the copula function C+. And the minimal element tends to C⊥ with the number of factors tends
towards infinite.

13Without loss of generality, we assume that the interest rates are zero.
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Figure 3: Tranching products and dependence function (I)

Figure 4: Tranching products and dependence function (II)
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4.1 Measuring the Risk of a Credit Portfolio

In order to simplify the presentation, we consider the loss expression of a credit portfolio as for the IRB
model of Basel II:

L (t) =
I∑

i=1

Li (t) =
I∑

i=1

xi · (1−Ri) · 1 {τi ≤ ti}

where Li (t) is the loss of the ith name, xi is the exposure at default, Ri is the recovery rate, τi is the default
time and ti is the maturity horizon. We make the following assumptions:

(A1) Ri is a stationary random variable with mean µi (R) and standard deviation σi (R) independent of the
random variables Rj (j 6= i) and all the default times (including τi) ;

(A2) the joint survival function S of the default times (τ1, . . . , τI) is defined with a copula representation

S (t1, . . . , tI) = C̆ (S1 (t1) , . . . ,SI (tI))

where C̆ is the survival copula and Si is the survival functions of the default time τi.

The copula framework is a natural method to ‘correlate’ default times because of internal credit rating
systems, which are the core of managing credit risk in banks. An internal credit rating system enables to
assign internal ratings to credits and to define for each rating its default rate with respect to a maturity. It
means that the survival functions Si are given. To build the joint survival function using the internal credit
rating system, the copula approach is then the more easy to implement.

The loss distribution is generally computed by a Monte-Carlo method. From a professional point of view,
one big issue is the computational time of the loss simulation, because credit portfolios are often very large.
In [34], we propose to use a Normal or Student copula with a sector-correlation matrix (or a factor-correlation
matrix ). Let j = 1, . . . , J (J ¿ I) denotes the jth sector. Let ρ? be the symmetric matrix with ρ? (j, j)
the intra-sector correlations and ρ? (j1, j2) the inter-sector correlations. j = m (i) is the mapping function
between the loan i and its sector j. The sector-correlation matrix Σ is then defined as follows14:

Σ = m (ρ?) =




1 ρ? (m (1) ,m (2)) · · · ρ? (m (1) ,m (I))

1
...

ρ? (m (I − 1) ,m (I))
1


 (1)

We can simulate the random variates (u1, . . . , uI) from the Normal copula with the correlation matrix Σ in
two different ways:

14Consider an example with 4 sectors

Sector 1 2 3 4
1 30% 20% 10% 0%
2 40% 30% 20%
3 50% 10%
4 60%

and 7 loans
i 1 2 3 4 5 6 7
j = m (i) 1 1 2 3 3 3 4

The sector-correlation matrix Σ is then

Σ =

0BBBBBBB@
1.00 0.30 0.20 0.10 0.10 0.10 0.00

1.00 0.20 0.10 0.10 0.10 0.00
1.00 0.30 0.30 0.30 0.20

1.00 0.50 0.50 0.10
1.00 0.50 0.10

1.00 0.10
1.00

1CCCCCCCA
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1. The [CHOL] algorithm is ui = Φ(zi) where z = chol (Σ) ε and ε is a vector of independent gaussian
random numbers N (0, 1).

2. The [Sloane] algorithm proposed by Riboulet and Roncalli [2002] is the following:

ρ? = V ?Λ?V ?> (eigensystem)

A? = V ?
• (Λ?)

1
2 (V ?

• is the L2-normalized matrix of V ?)

zi =
J∑

j=1

A?
m(i),jxj +

√
1− ρ? (m (i) ,m (i))εi

ui = Φ (zi)

where (x1, . . . , xJ , ε1, . . . , εI) is a vector of independent gaussian random numbers N (0, 1).

The algorithm order of [CHOL] is I2, but the algorithm order of [Sloane] is I (because J is fixed). Here are
some other characteristics of the two algorithms:

Dimension Number of Number of Number of
of the matrix random variates + operations × operations

[CHOL] I × I I I × (I − 1) I × I
[Sloane] J × J I + J I × J I × J

10000 loans + 20 sectors
[CHOL] 108 10000 ' 108 108

[Sloane] 400 10020 2× 105 2× 105

This explains why the [Sloane] algorithm is very fast (and less memory-consuming) compared to the [CHOL]
algorithm (in average, the computational time is divided by a ratio of I/J). Moreover, the [Sloane] algorithm
yields the following proposition: if the eigenvalues λ?

j are positive, then the matrix Σ obtained by the
construction (1) is a correlation matrix.

The [Sloane] algorithm is related to the IRB model of Basel II. This model corresponds to the Va-
sicek/Merton default model with one factor (Finger [1999]). We assume that the value of the assets Zi

are driven by a common, standard normally distributed factor X and an idiosyncratic normally distributed
component εi such that Zi =

√
ρX +

√
1− ρεi. It comes out that (Z1, . . . , ZI) is a standard Gaussian vector

with a constant-correlation matrix C (ρ). In this model, the default occurs when Zi falls below a barrier Bi.
Let us denote the default probability at time t by Pi (t). We remark that

S (t1, . . . , tI) = Pr {τ1 > t1, . . . , τI > tI}
= Pr {Z1 > B1, . . . , ZI > BI}
= Pr

{
Z1 > Φ−1 (P1 (t1)) , . . . , ZI > Φ−1 (PI (tI))

}

= C̆ (1− P1 (t1) , . . . , 1− PI (tI) ;C (ρ))
= C̆ (S1 (t1) , . . . ,SI (tI) ; C (ρ))

where C̆ is the survival Normal copula and the corresponding correlation matrix is C (ρ). To simulate
this model, we may use the so-called [

√
ρ] algorithm, which is defined as follows: ui = Φ(zi) where zi =√

ρx +
√

1− ρεi and (x, ε1, . . . , εI) is a vector of independent gaussian random numbers N (0, 1). It is in
fact a special case of the [Sloane] algorithm when J = 1.

Let us take the example given in [36]. The portfolio is composed of 500 loans with same maturity 5 years
and same exposure at default 1000 euros. The repartition by rating is the following:

Rating AAA AA A BBB BB B CCC
Number of loans 5% 15% 20% 30% 15% 10% 5%

13



For each rating, we calibrate an exponential survival function. We then assume that the dependence between
default times is a Normal copula with a factor-correlation matrix as in Footnote 14. The repartion by sector
is the following:

Sector 1 2 3 4
Number of loans 20% 30% 10% 40%

For the recovery rate, we calibrate a Beta distribution with µi (R) = 50% and σi (R) = 20%. Figure 5
presents the density of the loss distribution for the Normal copula with the factor-correlation matrix, and
under other assumptions on the dependence function.

Figure 5: Impact of the copula function on the loss distribution of the credit portfolio

Now, we turn to the computation of the risk of the credit portfolio, which is generally computed with a
VaR measure15 defined as the percentile α of the loss L (t) – CreditVaR (α) = inf {L : P {L (t) ≤ L} ≥ α}
– and its sensitivities. In Figure 6, we report the CreditVaR measure for the different copula functions.
We remark that the dependence modelling assumption has a big impact on the risk measure. We may
wonder if we have the same conclusion with the recovery rate modelling assumption. Indeed, because we
have an homogeneous portfolio16 and because the number of loans is large, we may considered that it is
almost an infinitely fine-grained portfolio (Gordy [2001]). So, as in the Basel II model, the recovery rate
modelling assumption has no impact on the CreditVaR measure, only the values taken by µi (R) play a
role17. To manage the risk of the credit portfolio, we have to compute the derivatives at Risk defined as
DR (i) = ∂ CreditVaR (α) /∂xi. For that, we use the result of Gouriéroux, Laurent and Scaillet [2000]
and Tasche [2000]:

Theorem 1 Let (ε1, . . . , εI) be a random vector and (x1, . . . , xI) a vector in RI . We consider the loss L

defined by L =
∑I

i=1 xi · εi and we set Q (L; α) the percentile α of the random variable L. Then, we have

∂ Q (L; α)
∂ xi

= E [εi | L = Q (L; α)]

15We do not here discuss the choice of the risk measure (see Szegö [2002] for this type of problem). We just remark that the
VaR measure is the most used risk measure in banks.

16We have the same exposure at default for all loans.
17It is confirmed by a Monte Carlo simulation (see [36]).
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Figure 6: Impact of the copula function on the CreditVaR

This result holds even in the non-Gaussian case. If we apply this result to our loss L (t), we have

DR (i) =
∂ CreditVaR (α)

∂ xi
= E [(1−Ri) · 1 {τi ≤ ti} | L = CreditVaR (α)] (2)

The issue is now to compute this conditional expectation with the Monte-Carlo method. Let (L1, . . . , Ln)
be the sample of the simulated losses. Computing the CreditVaR by a Monte-Carlo method is equivalent
to search the value taken by the order statistic Lnα:n of the simulated losses. A ‘natural’ estimator of the
conditional expectation (2) is then D̂R (i) = Li,m = (1−Ri,m)·1 {τi,m ≤ ti} where Ri,m et τi,m are the values
taken by Ri and τi for the simulation m corresponding to the order statistic Lnα:n. The problem is that the
variance of this estimator is very large, because the conditional expectation is estimated by using only one
point. So, in order to reduce the variance, we use a localization method. We suppose that CreditVaR (α) =∑

m∈M pmLm with
∑

m∈M pm = 1. We may interpret this value-at-risk as a mathematical expectation
under the probability measure {pm,m ∈M}. In this case, we have ∂ CreditVaR(α)

∂ xi
=

∑
m∈M pm

Li,m

xi
. For

the choice of the values of pm, we may consider a kernel method (like uniform or triangular). In order
to show the interest of the localization method, we take the example of a Gaussian loss L =

∑2
i=1 xi · εi

with
(

ε1

ε2

)
∼ N

((
0
0

)
,

(
1 0.5
0.5 1

))
and x1 = 100 and x2 = 50. An analytical computation gives

CreditVaR (99%) = 307.747, DR (1) = 2.198 and DR (2) = 1.759. With n equal to 5,000 simulations, we
notice in Figure 7 that the localization method18 gives a better result than the one-point method for the
estimation of the sensitivities19. If we now apply this method to our example, we obtain the derivatives at
risk of Figure 8. Besides, the localization method has another advantage. It enables to retrieve the Euler
principle:

CreditVaR (α) =
I∑

i=1

xi · ∂ CreditVaR (α)
∂ xi︸ ︷︷ ︸

continuous marginal contribution

(3)

18h is the window of the kernel.
19Note that the localization method does not improve the estimate of the VaR in this example
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Figure 7: Density of the estimator D̂R with the localization method

Figure 8: Derivative at risk of the credit portfolio
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xi · DR(i) is called the continuous marginal contribution (Koyluoglu and Stocker [2002]). With the
localization method, the CreditVaR appears to be the sum of all the continuous marginal contributions. We
may then decompose it by sector, rating, etc. We verify this decomposition property in our example:

rating / sector 1 2 3 4 Total by rating
AAA 0 81 13 170 264
AA 40 725 137 2752 3654
A 328 1849 199 7061 9437

BBB 1308 6718 1430 16661 26117
BB 1362 6988 1592 13488 23430
B 2275 4211 3019 10323 19827

CCC 1502 4983 902 4561 11948
Total by sector 6816 25554 7291 55015 94676 = CreditVaR

The previous property is very important for capital allocation and for portfolio management. Let us con-
sider the problem of efficient risk/return frontiers for credit risk. We have to solve the following optimization
problem:

min CreditVaR (x1, . . . , xI)
u.c. ExReturn (x1, . . . , xI) ≥ C

with C ∈ R+ and x ∈ Ω where Ω is a set of constraints (trading constraints, strategic constraints, etc.).
We face a non-linear optimization problem which is very difficult to solve numerically with real-life credit
portfolios. That is why some authors have proposed to replace the objective function by a proxy function
(Mausser and Rosen [1999], Rockafellar and Uryasev [2002]). For example, if we use the conditional
value-at-risk measure in place of the value-at-risk measure, the problem may be solved by using a linear pro-
gramming algorithm (Rockafellar and Uryasev [2002]). The decomposition (3) yields another method.
Let x0 be a starting allocation vector. We may write locally the problem as

min
∑I

i=1 xi ·DR
(
i;x0

)
u.c. ExReturn (x1, . . . , xI) ≥ C

x ∈ Ω

with DR
(
i;x0

)
= ∂ CreditVaR (α) /∂x0

i . The problem becomes locally linear, and so is easier to be solved.
Let us consider an illustration with the previous example. We remind that the original portfolio is defined
as x0

i = 1000 for all loans. We would like to know how to find the efficient risk / return frontier by changing
only the 25 first components of the portfolio. We report this frontier in Figure 9. With the localized method,
starting from the original portfolio, we much improve the risk / return, and the resulting portfolios are very
close to the frontier. To get an even better solution, we just need to run again the procedure starting from
these resulting portfolios.

4.2 Modelling Basket Credit Derivatives

When dealing with basket credit derivatives, one is quickly compelled to cope with the joint default proba-
bility for some counterparts. Until a quite recent time, the structural approach could be considered as the
predominant methodology. Within this framework, the default occurs at the first hitting time of a barrier
by the value process. Thus, it looks quite legitimate to model the joint default of two firms in the same
way as KMV and CreditMetrics, that is when both value processes cross their own default barriers. As a
consequence of such an approach, a Gaussian (or log-normal) assumption on the value processes induces a
Gaussian dependence between the defaults.

The main alternative to this structural approach tries to take into account the unpredictability of the
default random time. Then, when dealing with a single reference credit, one has to pay attention to the way
one is going to model the instantaneous default probability. In that approach, which is commonly called the
intensity based approach (or reduced-form), a default event is said to occur when an intensity process exceeds
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Figure 9: Optimized portfolio with the localized method

an unobserved threshold random variable. For one-firm derivatives, it provides a quite flexible framework
and can be easily fitted to actual term structure of credit spreads.

This section tackles the problem of modelling correlated default events within the intensity framework.
The problem is trivial when default times are assumed to be (conditionally) independent. But it is well known
among market practitioners that such a hypothesis does not allow to fit the observed default correlations.
We will recall on a toy example this idea that correlating even perfectly the firms’ spreads will not guarantee
an implied high dependence between default times. But when one wants to weaken this assumption the
problem becomes much more involved. Our method is first to estimate the marginal probability distribution
of each individual default and then to use copulas to model the joint distribution, following the recent works
of Li [2000], Giesecke [2001] and Schönbucher and Schubert [2001].

Throughout this whole section, we will denote by (Ft) the filtration (i.e the information) generated by all
state variables (economic variables, interest rates, currencies, etc.). Furthermore, we assume the existence
of a risk-neutral probability measure P.

4.2.1 Conditionally Independent Defaults

We begin to recall the basic ideas on (one then two firms) intensity models. A huge literature is available on
this subject. Not to give a too long list of references, we send the reader to Lando [1998] and Bielecki and
Rutkowski [2001], where a very thorough account of the intensity framework can be found (and also some
elements about the case of dependent defaults). In the case of conditionally independent defaults, once the
intensity processes are fixed (those are the latent variables of the model), the residual sources of randomness
which may affect the firms’ default times are assumed independent. Thus, all possible dependences between
defaults will result from the correlations between intensities. But we show that high default correlations
cannot be achieved in this way. In particular, it is worthless to compute historical spread correlations to
derive an accurate value of default correlations.

When there is only one defaultable firm, the basic elements of the intensity model are an (Ft)-adapted,
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non-negative and continuous process (λ1
t ) (firm 1’s intensity), and θ1 (the threshold), an exponential random

variable of parameter 1 independent from F∞. For example, when using a (multi-) factor interest rate
model, we can use the factor(s) for also driving the intensity process λ in order to provide correlations
between interest rates and the default process. Then firm 1’s default time is defined by (provided the firm
1 has not defaulted yet)

τ1 := inf
{

t :
∫ t

0

λ1
s ds ≥ θ1

}
(4)

Then the defaultable zero-coupon price of firm 1 is given by

B1(t, T ) = 1{τ1>t}E
[
e−
R T

t
(rs + λ1

s) ds|Ft

]
, (5)

which allows to identify the intensity process as firm 1’s spread.

This preceding framework is readily generalized to the case of I defaultable firms. For the sake of
simplicity, we consider only the case of two firms. Therefore, the default times of two firms 1 and 2 are
defined through (4) where we have this time two intensity processes λi, and two random thresholds θi which
are still assumed to be independent from F∞ and mutually independent. This last assumption is usually
made in practice for its tractability.

We choose quadratic intensities λi
t = σi(W i

t )
2 where W =

(
W 1,W 2

)
is a vector of two correlated (Ft)

Brownian motions — we shall note ρ for the correlation. The parameters σi are fixed such that we match
the cumulated default probabilities using

P (τi > t) =
1√

cosh
(
σit
√

2
)

In the following numerical application, we take σi = 0.04 which induces cumulated default probabilities quite
close to historical data relative to BBB rated firms.

Since an explicit form of the joint distribution of the default times τ = (τ1, τ2) can be explicitly derived,
one may be able to compute efficiently any correlation measures. The first one is the discrete default
correlation which corresponds to cor

(
1{τ1<t},1{τ2<t}

)
whereas the second one is the correlation between the

two random survival times cor (τ1, τ2), called the survival time correlation by Li [2000]. We remark in Figure
10 that this simple model does not suffice to produce significant correlations between defaults (moreover,
the correlations are only positive).

4.2.2 How to Get More Dependence ?

We no longer assume that the random thresholds are independent variables. By coupling the dependence
of the thresholds together with the correlation between the intensity processes, we achieve to produce more
realistic correlations between defaults. As the triggers are not market data, we shed light on the relationship
between the input distribution on the thresholds and the output distribution of the defaults. Many ideas
developed here were first explored by Li [2000], Giesecke [2001], and Schönbucher and Schubert [2001].

We still consider two defaultable firms, the default times of which are modelled as in (4). Here, we propose
to model the dependence between default process in a two-step algorithm. As is the case with conditionally
independent defaults, the first step consists in correlating the intensity processes. Then the second step deals
with the choice of the copula C̆θ of the thresholds (θ1, θ2) which are assumed to be independent from F∞.

Within the threshold framework, we can derive a new pricing formula for firm 1’s zero-coupon alternative
to (5) on {τ1 > t, τ2 > t}:

B1(t, T ) = E
24e−

R T
t rs ds

C̆θ
�
e−

R T
0 λ1

s ds, e−
R t
0 λ2

s ds
�

C̆θ
�
e−

R t
0 λ1

s ds, e−
R t
0 λ2

s ds
� | Ft

35 .
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Figure 10: Influence of the correlation parameter on the first default time

What is striking in this formula is the role of firm 2’s intensity in the valuation of a claim depending a
priori on firm 1’s default only. In the case of the independent copula C̆(u1, u2) = u1u2, we retrieve the usual
formula (5) (corresponding to the case of conditionally independent defaults). Of course, a similar valuation
formula still holds for more general contingent claims depending on both firms defaults.

As the random triggers are not observable variables, it may be useful to derive a relationship between
their copula and the implied dependence of default times. This will enable us to measure the spectrum of
dependence between defaults allowed by our method and thus what we gained compared to the assumption
of conditionally independent defaults.

Denoting C̆τ for defaults’ survival copula, we get from Giesecke [2001]

C̆τ (Sτ
1 (t1), S

τ
2 (t2)) = E

h
C̆θ
�
e−

R t1
0 λ1

s ds, e−
R t2
0 λ2

s ds
�i

.

A special case of this formula is worth noticing: if intensities are deterministic, both survival copulas are
equal. In particular, this shows that we can achieve high dependence between defaults, as we announced.
This also suggests an alternative computational method, which consists in directly imposing the copula C̆τ

on default times. This technique is Li’s original survival method, which we do not develop here because it
requires heavy Monte-Carlo simulations for computing the price of contingent claims.

Having a look at Figure 11, we see that the threshold approach enables to reach a wide range of correlation
for the multivariate default times distribution20. So, one could be optimistic when calibrating the parameters.
That means we can hope that the real correlation could be attainable within the above described framework.

20ρW is the correlation between the two Wiener processes, whereas ρθ is the parameter of the Normal copula between the
thresholds.
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Figure 11: Influence of the dependence function on the correlation

5 Operational Risk Management

According to the last proposals by the Basel Committee [3], banks are allowed to use the Advanced Mea-
surement Approaches (AMA) option for the computation of their capital charge covering operational risks.
Among these methods, the Loss Distribution Approach (LDA) is the most sophisticated one. It is also ex-
pected to be the most risk sensitive as long as internal data are used in the calibration process and then
LDA is more closely related to the actual riskiness of each bank.

5.1 The Loss Distribution Approach

This method is defined in the supporting document [2] to the New Basel Capital Accord:

Under the Loss Distribution Approach, the bank estimates, for each business line/risk type cell,
the probability distribution functions of the single event impact and the event frequency for the
next (one) year using its internal data, and computes the probability distribution function of the
cumulative operational loss.

Let i and j denote a business line and a loss type. ζ (i, j) is the random variable which represents the amount
of one loss event for the business line i and the event type j. The loss severity distribution of ζ (i, j)
is denoted by Fi,j . We assume that the number of events for the next year is random. The corresponding
variable N (i, j) has a probability function pi,j and the loss frequency distribution Pi,j corresponds to
Pi,j (n) =

∑n
k=0 pi,j (k). The loss for the business line i and the loss type j for the next year is the random

sum ϑ (i, j) =
∑N(i,j)

n=0 ζn (i, j). Let Gi,j be the distribution of ϑ (i, j). Gi,j is then a compound distribution

Gi,j (x) =





∞∑
n=1

pi,j (n)Fn?
i,j (x) x > 0

pi,j (0) x = 0

where ? is the convolution operator on distribution functions and Fn? is the n-fold convolution of F with
itself.
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An analytical expression of G is known only for a few probability distributions F and P (Klugman,
Panjer and Willmot [1998]). In other cases, we need a numerical algorithm to estimate G, for example
the Monte-Carlo method. In Figure 12, we consider a loss type with N (i, j) and ζ (i, j) distributed according
to the Poisson distribution P (50) and the log-normal distribution LN (8, 2.2).

Figure 12: The compound loss distribution

The capital-at-risk denoted CaR for the business line i and the loss type j is then the percentile of the
compound loss distribution with a confidence level α fixed at 99.9%.

5.2 The Diversification Effect

In the first version of the New Basel Capital Accord, “the capital charge [for the bank as a whole] is based
on the simple sum of the operational risk VaR for each business line/risk type cell. Correlation effects
across the cells are not considered in this approach”. Let us consider a bank with two operational risks.
We denote ϑ1 and ϑ2 the corresponding losses with continuous distributions G1 and G2. The loss of the
bank is ϑ = ϑ1 + ϑ2. The Basel II aggregation method is then CaR (α) = CaR1 (α) + CaR2 (α). We may
show that this aggregation rule implies that the dependence function between ϑ1 and ϑ2 is C+. Indeed,
we have ϑ2 = G−1

2 (G1 (ϑ1)). Let us denote $ the function x 7→ x + G(−1)
2 (G1 (x)). it comes that α =

P {ϑ1 + ϑ2 ≤ CaR (α)} = E
[
1[$(ϑ1)≤CaR(α)]

]
= G1

(
$−1 (CaR (α))

)
and so CaR (α) = $

(
G(−1)

1 (α)
)

=

G(−1)
1 (α) + G(−1)

2

(
G1

(
G(−1)

1 (α)
))

= CaR1 (α) + CaR2 (α).

The simple sum of capital-at-risk corresponds then to the case of the Upper Fréchet bound copula. It
implies that we do not have I × J sources of randomness, but only one. Indeed, if we know the value of
ϑ (i, j) for one pair (i, j), we know the values for all the other pairs. Another problem with such a method
is related to how the bank divides its activities into business lines and loss types. With this aggregation
method, the capital-at-risk of the bank generally increases with the number of business lines and loss types.
Banks will not have an incentive to adopt a sophisticated categorization for business lines and loss types.

The Basel Committee has changed his opinion since that time. In [3], it says:
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The overall capital charge may be based on the simple sum of the operational risk “VaR” for each
business line/risk type combination – which implicitly assumes perfect correlation of losses across
these cells – or by using other aggregation methods that recognise the risk-reducing impact of
less-than-full correlation. [...] The bank will be permitted to recognise empirical correlations in
operational risk losses across business lines and event types, provided that it can demonstrate that
its systems for measuring correlations are sound and implemented with integrity. In the absence
of specific, valid correlation estimates, risk measures for different business lines and/or event
types must be added for purposes of calculating the regulatory minimum capital requirement.

In [5], we propose to put the dependence function on the frequencies. However, we may suppose that both
frequencies and severities are correlated. That is why Frachot et al. [2001] suggest to put the copula
directly between the ϑ’s random variables. The difficulty is then to define (numerically) the total loss of
the bank ϑ =

∑I
i=1

∑J
j=1 ϑ (i, j) and the corresponding capital-at-risk CaR (α) = inf {x : P {ϑ ≥ x} ≥ α}.

Indeed, the distribution of ϑ (i, j) is a compound distribution which has in most case no analytical form, and
so may be very difficult to simulate the random variates. However, using a Glivenko-Cantelli argument, it is
possible to simulate them by using the empirical quantiles method. Let ϑ1 and ϑ2 be two random variables
with distribution G1 and G2 and a copula function C. The algorithm is the following:

1. Simulate first m random numbers of ϑ1 and ϑ2. We denote by Ĝ1,m and Ĝ2,m the empirical distribu-
tions.

2. Simulate a random vector (u1, u2) from the copula distribution C.

3. Simulate the random vector (x1, x2) by the inverse method and x1 = Ĝ−1
1,m (u1) and x2 = Ĝ−1

2,m (u2).
Set x = x1 + x2 = Ĝ−1

1,m (u1) + Ĝ−1
2,m (u2).

4. Repeat the steps 2 and 3 n times.

For example, with N1 ∼ P (10), ζ1 ∼ LN (1, 1), N2 ∼ P (12) and ζ2 ∼ LN (1.25, 0.5), and a Normal copula
with parameter ρ, we obtain Figure 13. In Figure 14, we have reported the capital-at-risk. Note that the
(almost) linear relationship between the capital-at-risk and the parameter ρ comes from the example and
the Normal copula family.
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[8] Deheuvels, P. [1978], Caractérisation complète des lois extrêmes multivariées et de la convergence des
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