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Abstract. We present an explicit formula for European options on coupon bearing bonds and

swaptions in the Heath-Jarrow-Morton (HJM) one factor model with non-stochastic volatility.
The formula extends the Jamshidian formula for zero-coupon bonds. We provide also an explicit

way to compute the hedging ratio (∆) to hedge the option with its underlying.

1. Introduction

The framework of this article is a Heath-Jarrow-Morton [3] one factor model. The volatility
used is non-stochastic and generalizes Ho and Lee [4] and Hull and White [5] volatilities models.
In this framework we provide an explicit formula for coupon-bearing bonds and swaptions.

The nature of the situation we want to model being infinite dimensional (we model the whole
interest rate curve). As the model contains only one factor there are situations where the model
reaches its limitations. In particular several situations where the results can be applied from the
theoretical point of view, but are beyond the capacity of the model, are presented in Section 7.
Here we apply the model to bond and swap options which rely mainly on one factor, the yield or
swap rate, making the model appropriate.

Jamshidian [8] proposes an explicit formula for zero-coupon bonds and a less explicit one for
coupon bearing bonds. His formula is obtained by writing the option on the bond as a portfolio
of options on the coupons. The strike price of each individual option is adjusted in such a way
that all of them are exercised simultaneously. This approach is also the one described by Hull [6,
Section 21.4] and Musiela and Rutkowski [11, Section 12.3.5, p. 298].

The result we obtain for coupon bearing bonds is a generalization of the zero-coupon bond
formula. There is a term for each coupon (as opposed to zero-coupon unique term) and one for
the strike price. The formula is identical to Jamshidian’s one for zero-coupon bonds but is more
explicit for coupon bonds. To obtain the result, we impose a condition on the volatility. Ho and
Lee and Hull and White volatility models satisfy those conditions.

The pricing formula we present contains a parameter that is obtained implicitly as the (unique)
solution of a one dimensional equation with as many exponential terms as the number of coupons
plus one. This equation with only two terms has to be solved to obtain the classical Black and
Scholes formula [1]. In the Black and Scholes case it is possible to solve the equation explicitely
and its solution is the well known “d2”.

Let P (s, t) denote the price in s of the zero coupon bond of maturity t and final value 1. We
suppose that it satisfies the equation

dP (t, u) = P (t, u) (r(t)dt + ν(t, u)dWt) .

To obtain the explicit formula for coupon bearing bonds, we will also suppose that

H2: The function ν satisfies ν(s, t2)− ν(s, t1) = f(t1, t2)g(s) for some positive function g.
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Our result applied to bonds follow (the precise hypothesis on the model are given in the next
section). Note that we allow the payment of the strike price to be different (after) the expiry.

Theorem 1. Let θ ≤ t0 ≤ t1 ≤ · · · ≤ tn. Consider a bond which pays ci ≥ 0 at times ti
(1 ≤ i ≤ n). We work in the Heath-Jarrow-Morton one factor model with a volatility structure of
the form (H2). At time 0, the price of an European call on the bond with expiry θ and strike price
K to be paid in t0 is

n∑
i=1

ciP (0, ti)N(κ + αi)−KP (0, t0)N(κ + α0)

where κ is the (unique) solution of

(1)
n∑

i=1

ciP (0, ti) exp
(
−1

2
αi

2 − αiκ

)
= KP (0, t0)

and the αi’s are the positive numbers such that

(2) αi
2 =

∫ θ

0

(ν(s, ti)− ν(s, θ))2 ds.

The price of an European put is given by

KP (0, t0)N(−κ− α0)−
n∑

i=1

ciP (0, ti)N(−κ− αi).

Note that when n = 1 (one payment), the equation (1) is exactly the one to be solved to obtain
the “d2” used in the Black and Scholes formula. In this respect the naming convention in the Black
and Scholes formula is misleading, the “d2” comes before the “d1”. As it will be proved later, the
solution of our equation is unique and non-degenerate, so it can be solved by standard numerical
methods (like Newton-Raphson). In a different context, this type of equation is also the one to be
solved to construct a continuously compounded zero-coupon curve linearly interpolated between
two non standard points (for example the zero coupon curve in GBP between 5 and 7 years using
semi-annual swaps requires to solve a similar equation with 4 terms).

In section 5, we give an explicit way to compute an hedging ratio (∆) of an option. It is
then possible to compute the hedge ratio required for each option using its underlying instrument
instruments.

In Section 7 we provide examples where unrealistic results are obtained by using the model
beyond its limitations.

2. Model and hypothesis

We use a model for P (t, u), the price at t of the zero-coupon bond paying 1 in u. We will
describe this for all 0 ≤ t, u ≤ T , where T is some fixed constant.

When the discount curve P (t, .) is absolutely continuous, which is something that is always the
case in practice as the curve is constructed by some kind of interpolation, there exists f(t, u) such
that

(3) P (t, u) = exp
(
−
∫ u

t

f(t, s)ds

)
.

A model that describes f and deduces P from it can be seen as meaningful. The idea of Heath-
Jarrow-Merton [3] was to exploit this property by supposing that

df(t, u) = µ(t, u)dt + σ(t, u)dWt

for some suitable (stochastic) µ and σ.
Here we use a similar model, but we restrict ourself to non-stochastic coefficients. The exact

hypothesis on the volatility we require is described by (H2). But we don’t need all the technical
refinement used in their paper or similar one, like the one described in [7] in the chapter on
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dynamical term structure model. So instead of describing the conditions that lead to such a model,
we suppose that the conclusions of such a model are true. By this we mean we have a model, that
we call a HJM one factor model, with the following properties.

Let A = {(s, u) ∈ R2 : u ∈ [0, T ] and s ∈ [0, u]}. We work in a filtered probability space
(Ω, F, Preal, (Ft)). The filtration Ft is the (augmented) filtration of a one-dimensional standard
Brownian motion (W real)0≤t≤T .

H1: There exists σ : [0, T ]2 → R+ measurable and bounded1 with σ = 0 on [0, T ]2 \ A

such that for some process (rs)0≤t≤T , Nt = exp(
∫ t

0
r(s)ds) forms, with some measure N, a

numeraire pair2 (with Brownian motion Wt),

df(t, u) = σ(t, u)
∫ u

t

σ(t, s)ds dt− σ(t, u)dWt

dPN (t, u) = PN (t, u)
∫ u

t

σ(t, s)ds dWt

and r(t) = f(t, t).

The notation PN (t, s) designates the numeraire rebased value of P , i.e. PN (t, s) = N−1
t P (t, s).

To simplify the writing in the rest of the paper, we will use the notation

ν(t, u) =
∫ u

t

σ(t, s)ds.

Note that ν is increasing in u, measurable and bounded.
Moreover for t > u, ν(t, u) = 0, and so PN (t, u) is constant. Then P (t, u) represents the discount

factor from u to t when t ≤ u and is the money invested at the instantaneous rate rs for u ≤ s ≤ t
when t > u. In that way we have a model for the price after maturity and we can value bond
options on bonds that are paying coupons before option expiry.

As we will apply our results to coupon bearing bonds, we define such a bond. Let Q(t) =∑n
i=1 ciP (t, ti) where ci > 0 (1 ≤ i ≤ n) and T > tn > · · · > ti > · · · > t1. The numeraire rebased

bond satisfies
dQN

t =
∑

ciP
N (t, ti)ν(t, ti)dWt = QN

t ρtdWt

for some adapted process (ρt)0≤t≤θ.
Note that the bond we use in the hedging strategy is “generic”. The random variable that

defines the option can be based on different assets described by the model. In particular, an option
on a 1 year bond can be hedged by a 10 years bond.

We us the following generic pricing theorem [7, Theorem 7.33-7.34].

Theorem 2. Let VT be some FW
T -measurable random variable. If VT is attainable, then the time

t value of the derivative is given by V N
t = V N

0 +
∫ t

0
φudQN

u where φt is the strategy and

Vt = Nt EN
[
VT N−1

t

∣∣Ft

]
.

3. The proof

Before starting the proof of the result it-self, we prove two technical lemmas.

Lemma 1. In a HJM one factor model, the price of the zero coupon bond can be written has,

P (t, u) =
P (0, u)
P (0, t)

exp
(
−1

2

∫ t

0

(
ν2(s, u)− ν2(s, t)

)
ds +

∫ t

0

(ν(s, u)− ν(s, t)) dWs

)
.

1Bounded is too strong for the proof we use, some L1 and L2 conditions are enough, but as all the examples we

present are bounded, we use this condition for simplicity.
2See [7] for the definition of a numeraire pair. Note that here we require that the bonds of all maturities are

martingales for the numeraire pair (N, N).
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Proof. By definition of the forward rate and its equation,

P (t, u) = exp
(
−
∫ u

t

f(t, τ)dτ

)
= exp

(
−
∫ u

t

[
f(0, τ) +

∫ t

0

ν(s, τ)D2ν(s, τ)ds−
∫ t

0

D2ν(s, τ)dWs

]
dτ

)
.

Then using again the definition of forward rates and the Fubini theorem on inversion of iterated
integrals, we have

P (t, u) =
P (0, u)
P (0, t)

exp
(
−
∫ t

0

∫ u

t

ν(s, τ)D2ν(s, τ)dτds +
∫ t

0

∫ u

t

D2ν(s, τ)dτdWs

)
=

P (0, u)
P (0, t)

exp
(
−
∫ t

0

1
2
(
ν2(s, u)− ν2(s, t)

)
ds +

∫ t

0

ν(s, u)− ν(s, t)dWs

)
.

�

Lemma 2. In the HJM one factor model, we have

N−1
t = exp

(
−
∫ t

0

r(s)ds

)
= P (0, t) exp

(∫ t

0

ν(s, t)dWs −
1
2

∫ t

0

ν2(s, t)ds

)
.

Proof. The computation of this lemma are similar to the one of Lemma 1. By definition of r,

r(τ) = f(τ, τ) = f(0, τ) +
∫ τ

0

df(s, τ)ds

= f(0, τ) +
∫ τ

0

ν(s, τ)D2ν(s, τ)ds−
∫ τ

0

D2ν(s, τ)dWs.

Then using Fubini, we have∫ t

0

r(τ)dτ =
∫ τ

0

f(0, τ)dτ +
1
2

∫ t

0

ν2(s, t)ds−
∫ t

0

ν(s, t)dWs.

�
To obtain the explicit formula, we will also suppose that

H2: The function ν satisfies, for all s ≤ t1 ≤ t2, ν(s, t2) − ν(s, t1) = f(t1, t2)g(s) for some
positive function g.

Note that as ν is measurable and bounded, so are f and g. As ν is increasing in ti and g is
positive, f(t1, t2) is positive for t2 > t1. Moreover as ν is increasing in t2, so is f(t1, t2). This
proves that the αi form an increasing sequence, fact that is used in the proof of the main theorem.

Example: The Ho and Lee volatility model [4] and the Hull and White volatility model [5] satisfy
the condition (H2). For Ho and Lee one has ν(s, t) = σ(t− s) and σ(s, t) = σ; for Hull and White
one has ν(s, t) = (1− exp(−a(t− s)))σ/a and σ(s, t) = σ exp(−a(t− s)).

In the case of the Ho and Lee model, one has, for ti ≥ θ,

α2
i = σ2(ti − θ)2θ

and for the Hull and White model,

α2
i =

σ2

2a3

(
e−aθ − e−ati

)2 (
e2aθ − 1

)
.

Example: For any ν that satisfies the condition, ν̃(s, t) = g̃(s)ν(s, t) satisfies also the condition. So
it is possible in the two previous models to introduce a short term rate volatility σ that depends
on the moment at which they are seen (turbulent period).

It is also possible to include some future events like year turn in the volatility structure. For
example ν(s, t) = σ

∫ t

s
h(u)du with h(u) = 1 except for u close to year end where h(u) = 2 define a
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volatility structure where the forward rate for the year turn is twice as volatile as the other forward
rates.

Example: The hypothesis (H2) covers also the type of volatility function described in [12]. They
suppose that σ(s, t) = σ(s, s)k(s, t) where k(s, t) = exp(−

∫ t

s
κ(x)dx) for some deterministic func-

tion κ. This type of volatility is a particular case of (H2) with

g(s) = σ(s, s) exp

(
−
∫ θ

s

κ(x)dx

)
and f(t1, t2) =

∫ t2

t1

exp
(
−
∫ u

θ

κ(x)dx

)
du.

We are now ready to prove our main result.

Theorem 3. Let 0 ≤ t0 ≤ t1 ≤ · · · tm − 1 ≤ tm < tm + 1 ≤ · · · ≤ tn < T and 0 ≤ θ ≤ tm.
Consider a bond which pays ci > 0 at times ti (1 ≤ i ≤ n, i 6= m). In the a HJM one factor model,
when the volatility term has the form (H2), the price of an European call of expiry θ on the bond
with forward payment at time tm of −cm > 0 is given at time 0, by

n∑
i=m

ciP (0, ti)N(κ + αi)

where αi are given by

α2
i =

∫ θ

0

(ν(s, ti)− ν(s, θ))2ds

and κ is the (unique) solution of
n∑

i=m

ciP (0, ti) exp
(
−1

2
αi

2 − αiκ

)
= 0.

The price of an European put is given by

−
n∑

i=m

ciP (0, ti)N(−αi − κ).

The price of an European cash-or-nothing call with expiry θ and forward strike −cm paying 1
in tm when the forward price for settlement in tn is larger than −cm is

P (0, tm)N(κ + αm)

where κ is the (unique) solution of
n∑

i=m

ciP (0, ti) exp
(
−1

2
αi

2 − αiκ

)
= 0.

The price of an European asset-or-nothing call with expiry θ and forward strike −cm paying the
bond in tm when the forward price for settlement in tn is larger than −cm is

n∑
i=m+1

ciP (0, ti)N(κ + αi)

where κ is equal to the one of the previous case.

Remark: If θ = tm, the option is a normal option with expiry and payment date at θ and strike
cm.
Remark: It is possible to obtain an explicit result in the case where the ci don’t have all the
same sign or when the payoff is not a piecewise linear function of the P (θ, ti) but any piecewise
polynomial function of it. But in these cases, the equation for the κ can have several solutions and
the set on which we have to integrate the normal distribution will be non-connected and made of
several intervals. The problem become more difficult to write but is not impossible to solve.
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Remark: If, like [2], we use the forward rate as a substitute of the future rate, i.e. we suppose that
the price of a 3 months (t1-t2) rate future is given in t by

100
(

1− 4
(

P (t, t1)
P (t, t2)

− 1
))

we can obtain the price of options on the future. The price of a call of maturity θ and strike K on
this future is given by(

5− K

100

)
N(κ) + 4

P (0, t1)
P (0, t2)

exp
(
−1

2
(α2

1 − α2
2) +

1
2
β

)
N(κ + β)

where β2 =
∫ θ

0
(ν(s, t1)− ν(s, t2))2ds and

κ =
1
β

(
1
4

(
5− K

100

)
ln(

P (0, t2)
P (0, t1)

) +
1
2
(α2

1 − α2
2)
)

.

Proof. Let W#
t = Wt −

∫ t

0
ν(s, θ)ds. By the Girsanov’s theorem ([9, Section 4.2.2, p. 72]), W#

t is
a standard Brownian motion with respect to the probability P# of density

exp

(∫ θ

0

ν(s, θ)dWs −
1
2

∫ θ

0

ν2(s, θ)ds

)
with respect to N.

Note that
∫ θ

0

(
ν2(s, ti)− ν2(s, θ)

)
ds can be written as∫ θ

0

(ν(s, ti)− ν(s, θ))2 ds + 2
∫ θ

0

ν(s, θ) (ν(s, ti)− ν(s, θ)) ds.

By Lemma 1, we obtain

P (θ, ti) =
P (0, ti)
P (0, θ)

exp

(
−1

2
α2

i +
∫ θ

0

ν(s, ti)− ν(s, θ)dW#
s

)
.

As the stochastic integral of a non stochastic function is normal ([9, Section 3.6, p 65]) and using
condition (H2), we have

P (θ, ti) =
P (0, ti)
P (0, θ)

exp
(
−1

2
α2

i − αiX

)
with α2

i =
∫ θ

0
(ν(s, ti)−ν(s, θ))2ds and X a standard normal distribution with respect to P#. Note

that condition (H2) is used to prove that X is the same for all i.
Then the price of the call is, using Lemma 2 and the definition of P#,

EN

e−
∫ θ
0 r(s)ds

(
n∑

i=m

ciP (θ, ti)

)+


= E#

(
P (0, θ)

(∑
ci

P (0, ti)
P (0, θ)

exp(−1
2
α2

i − αiX)
)+
)

= E#

((∑
ciP (0, ti) exp(−1

2
α2

i − αiX)
)+
)

=
1√
2π

∫ +∞

−∞

(∑
ciP (0, ti) exp(−1

2
α2

i − αiy)
)+

e−
1
2 y2

dy.

We show now that h(y) =
∑

ciP (0, ti) exp(− 1
2α2

i − αiy) is positive for y < κ.
Define

Ai = ciP (0, ti) exp(−1
2
α2

i ), q1(y) =
∑

Ai exp(−(αi − αm)y) + Am
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and

q2(y) = −
∑

αiAi exp(−(αi − αm)y)− αmAm.

So

h(y) = exp(−αm+1y)q1(y) and h′(y) = exp(−αm+1y)q2(y).

First suppose that tm > θ, then αm > 0. As q2 is increasing, limy→−∞ q2(y) = −∞ and
limy→+∞ q2(y) = −αmAm > 0, then there exists y0 such that h is decreasing on (−∞, y0) and
increasing on (y0,+∞). As limy→−∞ q1(y) = +∞ and limy→+∞ q1(y) = A0 < 0, there exists
κ > y0 such that h(κ) = 0, h(y) > 0 on (−∞, κ) and h(y) < 0 on (κ, +∞).

In the case where tm = θ, αm = 0 and we have the same type of reasoning with y0 = +∞.
The function f(y)−KP (0, θ) is positive if and only if y < κ. The price of the call is then

1√
2π

∫ κ

−∞

(∑
ciP (0, ti) exp(−1

2
α2

i − αiy)
)

e−
1
2 y2

dy

=
∑

ciP (0, ti)
1√
2π

∫ κ

−∞
exp(−1

2
α2

i − αiy)e−
1
2 y2

dy

=
∑

ciP (0, ti)N(κ + αi).

For the cash-or-nothing call, the price is

E#

(
P (0, θ)11

(
n∑

i=m

ciP (0, ti) exp(−1
2
α2

i − αiX) > 0

))
= P (0, θ)N(κ).

For the asset-or-nothing call, the price is

E#

(
n∑

i=m

ciP (0, ti) exp(−1
2
α2

i − αiX)11

(
n∑

i=m

ciP (0, ti) exp(−1
2
α2

i − αiX) > 0

))

=
n∑

i=m

ciP (0, ti)
1√
2π

∫ κ

−∞
exp

(
−1

2
(αi + y)2

)
dy =

n∑
i=m

ciP (0, ti)N(κ + αi).

�
Remark: Suppose that tm+1 = θ and let

Ki =
P (0, ti)
P (0, θ)

exp
(
−1

2
α2

i − αiκ

)
.

Then by definition of κ,
∑n

i=m+2 ciKi = −cm. This shows that the price of the call can be written
as ∑

ci

(
P (0, ti)N(κ + αi)−KiP (0, θ)N(κ)

)
,

i.e the price of the call on a set of coupons is equal to the price of a portfolio of options on the
coupons with special strike prices. This is the approach of Jamshidian [8].

By looking at the proof, it can be verified that all the option are in the money together, i.e(∑
ciP (0, ti) exp

(
−1

2
α2

i − αiy

)
−KP (0, θ)

)+

=
∑

ci

(
P (0, ti) exp

(
−1

2
α2

i − αiy

)
−KiP (0, θ)

)+

.

Remark: The hypothesis (H2) is only used to show that the random variable X is the same for all
i. So the hypothesis (H2) can be replaced by any other hypothesis that implies the same property.
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4. Zero-coupon bond option

Theorem 4. Let 0 < θ ≤ t1 < t2 < T , b1, b2 (1 ≤ i, j ≤ 2) be such that

bi.bj =
∫ θ

0

(ν(s, ti)− ν(s, θ)) (ν(s, tj)− ν(s, θ)) ds,

and B = (b1, b2). Suppose that B is of rank 2.
In the HJM one factor model, the price of an European call of maturity θ (and strike 0) on a

zero-coupon bond with maturity t2 and forward payment at time t1 of K is given at time 0 by

P (0, t2)N(d2)−KP (0, t1)N(d1)

where for φ1 = +1 and φ2 = −1,

di =
1

|b1 − b2|

(
ln
(

P (0, t2)
KP (0, t1)

)
+ φi

1
2
|b1 − b2|2

)
Proof. Like in the previous proof, we have

P (θ, ti) =
P (0, t1)
P (0, θ)

exp
(
−1

2
|bi|2 −Xi

)
but now the Xi are not perfectly correlated anymore. We have that X = (X1, X2) ∼ N(0, BT B).
Then for some Y ∼ N(0, I), X = BT Y .

The price of the option is given by

1
2π

∫
R2

(
P (0, t2) exp(−1

2
|b2|2 − b2.y)−KP (0, t1) exp(−1

2
|b1|2 − b1.y)

)+

exp(−1
2
|y|2)dy.

The integrand is positive when

(b1 − b2).y > ln
(

KP (0, t1)
P (0, t2)

)
− 1

2
(|b1|2 − |b2|2) = c.

Let a = b1 − b2. Computing the value of the option involves computing integrals of the form

Ii =
1
2π

∫
a.y>c

exp
(
−1

2
|y + bi|2

)
dy.

We change to variable w = CT (y + bi) where C =
(

a
|a| ,

a⊥

|a|

)
. Note that CT = C−1 and |C| = 1.

We obtain

Ii =
1
2π

∫
w1> 1

|a| (c+a.bi)

exp
(
−1

2
|w|2

)
dw

=
1√
2π

∫ 1
|a| (c+a.bi)

−∞
exp

(
−1

2
w2

1

)
dw1

1√
2π

∫
R

exp
(
−1

2
w2

2

)
dw2.

As the second integral is equal to 1, we have

Ii = N

(
1
|a|

(c + a.bi)
)

.

Note that

c + a.bi = c + (b1 − b2).bi = ln
(

P (0, t2)
KP (0, t1)

)
+ φi

1
2
|b1 − b2|2.

�
Remark: If A is of rank 1, we can apply Theorem 3.
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5. Hedging

We now describe how to hedge an option on a coupon bearing bond by a portfolio of cash and
a certain quantity of bond. So we describe the Delta of the option.

Theorem 5. Suppose the hypotheses of Theorem 3 are satisfied and let S denote the bonds that
pays bi in ti (0 ≤ i ≤ n). Then the hedging strategy is to hold

∆ =
∑n

i=m ciP (0, ti)ν(0, ti)N(κ + αi)∑n
i=0 biP (0, ti)ν(0, ti)

bond S.

Proof. Let P (t) = (P (t, t0), . . . , P (t, tn)). By Theorem 3 the value of the option is

Vt = F (P (t), t)

with F : R× Rn → R. We prove that Di+1F (0, P (0)) = ciN(κ + αi).
This is a consequence of the implicit function theorem [10]. Let xi = P (0, ti). We have

f(κ, x) =
n∑

i=m

cixi exp
(
−1

2
α2

i − αiκ

)
= 0.

As D1f(κ, x) = −
∑

αjcjxj exp(− 1
2α2

j − αjκ) 6= 0, we can apply the implicit function theorem.
Then we have, for i = m, . . . , n

Di+1F (0, x) = ciN(κ + αi) +
[∑

cjxjN
′(κ + αj)

]
Diκ.

We can decompose N ′(κ+αj) in 1√
2π

exp(− 1
2α2

j −καj) exp(− 1
2κ2), so using the definition of κ we

have

Di+1F (0, x) = ciN(κ + αi) + (
∑

cjxj exp(−1
2
α2

j − καj))
1√
2π

exp(−1
2
κ2)Diκ

= ciN(κ + αi).

Using the multidimensional Itô formula, we have for t < θ,

V N
t = F (0, P (0)) +

∫ t

0

F (s, P (s))dN−1
s +

∫ t

0

N−1
s D1F (s, P (s))ds

+
∫ t

0

N−1
s

n∑
i=1

Di+1F (s, P (s))dP (s, ti)

+
1
2

∫ t

0

N−1
s

n∑
i,j=0

Di+1,j+1F (s, P (s)) d
〈
PN (., ti), PN (., tj)

〉
s

= F (0, P (0)) +
∫ t

0

n∑
i=0

PN (s, ti)ν(s, ti)Di+1F (s, P (s))dWs +
∫ t

0

Hsds.

As V N
t is a martingale under N, we have Hs = 0. By expliciting the value of the volatility of S

and the value of Di+1F ,

V N
t = F (0, P (0)) +

∫ t

0

∑n
i=m ciP

N (s, ti)ν(s, ti)N(κ + αi)∑n
i=0 biPN (s, ti)ν(s, ti)

dSN
s .

Theorem 2 is valid for any hedging instruments, in particular for S. Using this theorem and the
uniqueness of the decomposition of an Itô process, we have

(4) ∆t = φt =
∑n

i=m ciP (t, ti)ν(t, ti)N(κ + αi)∑n
i=0 biP (t, ti)ν(t, ti)

�
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6. Application

We apply our result to obtain the price of a swaption (or option on forward starting swap if we
want). A receiver swaption with strike rate R and expiry θ on a swap of starting date t0 and term
tn − t0 is the right to enter at time θ in a swap with starting date t0 and maturity tn where one
pays the floating rate and receives a fixed rate R. We suppose that the dates of the fixed coupons
are ti > θ(i = 1, . . . , n) and that the coupons are δiR with δi the accrual factors. The floating leg
has a value of 1. The swaption is equivalent to a call option on a bond paying a coupon of R with
strike price of 1.

Theorem 6. Suppose we work in the HJM one factor model with a volatility term of the form
(H2). We use the notation ci = δiR (1 ≤ i ≤ n) and cn = 1 + δnR. The price of an European
receiver swaption, with expiry θ and strike rate R on a swap with starting date t0 and maturity
date tn, is given at time 0 by

n∑
i=1

ciP (0, ti)N(κ + αi)− P (0, t0)N(κ + α0)

where κ is the (unique) solution of
n∑

i=1

ciP (0, ti) exp(−1
2
αi

2 − αiκ) = P (0, t0) exp(−1
2
α0

2 − α0κ)

and

αi
2 =

∫ θ

0

(ν(s, ti)− ν(s, θ))2 ds.

The rate of hedging (∆) by forward swaps starting at t0 and with fixed rate R is

∆ =
∑n

i=1 ciP (0, ti)ν(0, ti)N(κ + αi)− P (0, t0)ν(0, t0)N(κ + α0)∑n
i=1 δiRP (0, ti)ν(0, ti)− P (0, t0)ν(0, t0)

The hedging ratio (∆) for swaptions or bond options is interesting in itself. It allows, at the
same time, to hedge the options individually and to use a unique model for the pricing of different
instruments. So the different options are priced coherently, using only one set of parameters (σ
and a in the Hull and White model). But each option can be hedge by its underlying, reducing
the model risk.
Remark: A method often used to compute the sensitivity of interest rate options is to differentiate
the price with respect to the different rates or discount factors. This is not coherent with the
model used as it is a one factor model and the rates cannot move independently. By doing that,
the sensitivity to the discount factor P (0, ti) is ciN(κ + αi). The sensitivity of the underlying to
the same factor is ci. So we obtain a sensitivity of the option that is not equal to the sensitivity
of a certain amount of its underlying. By this method it becomes impossible to hedge a bond
option with its underlying bond, which is in contradiction with the principle of option pricing and
hedging.

7. Limits of the model

The model we present is a one factor model with the factor representing intuitively the level of
rates. So trades that involves several instruments or one instrument that depends of the shape of
the curve can be (largely) incorrectly valued.

Section 5 explain how to hedge a bond option on the bond Q with a portfolio of bond S and
cash. In particular an option on a one year bond could be hedged with ten year bonds. It is quite
clear that the relation between the one and the ten years bonds depends largely of the shape of
the curve, of its slope. So we don’t advice this type of hedging strategy.

The theory does not put any restriction on the payment date with respect to the expiry (except
that it has to be after). So a one year option on a ten year bond with payment seven years after the
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expiry is theoretically possible. We show now with an example that this gives gives theoretically
correct results but financially aberrant.

Example: We use the times θ = 1, t0 = 8, and t1 = 11. We use the Hull and White model with
parameter a = 0.1 and σ = 0.015 (we take those values from Example 21.2 of Hull’s book [6]). The
rates (continuously compounded zero-coupon) for the different dates are rθ = 4%, r0 = 5%, and
r1 = 6%. We study the option with expiry θ on the zero-coupon bond paying c1 at time t1 with a
strike of c0 to be payed in t0. We normalize the cash flow c0 to -1 and take c1 such that the option is
valueless is at expiry the rates are 5% and 5.5%. So c1 = exp(−0.05(t1−t0))/ exp(−0.055(t2−t1)) =
1.22143. As it is a zero-coupon bond, κ can be computed explicitely. Its value is κ = −3.3456. In
our model the option is exercised only if the standard normal distribution y that determines the
process is such that y < κ (see the proof of the main theorem). This happens with a probability4

of only 0.0411%. The model also predict that this will happen only if at expiry the seven year rate
is lower that 1.6701% and the ten year rate is lower than 3.1393%.

We do the same computation with c1 such that the option is valueless when the rates at expiry
are 5% for seven and ten year (flat yield curve). The probability of exercising the option become
6.6E-8% (7 hundred millionth of percent). The model predicts that the exercise will take place
only if the seven years rate is less than -1-1237% and the ten years rate less than 0.6836%!

The results are strange because the value of the option depends slightly of the level of rates
(that’s fine) and largely of the slope of the curve between t0 and t1 (that’s the problem).

From those discussions it is clear that if one used the model for a product that does not depend
principally on one rate, some problem can appear. For standard products like a swaption or a
bond option with settlement one or two days after the expiry the model gives satisfactory results.

8. Conclusion

We present an explicit formula for call and put options on coupon bearing bonds and swaptions
in a HJM one factor model. We emphasize that care and judgment has to be used when utilizing
this type of model. Being explicit, the formula is easy to implement and requires only standard
functions. The only (small) difficulty is that one needs to solve a one dimensional equation involving
exponential. However its solution is unique and non-degenerate and can be found by standard
numerical methods . Moreover, we explain how to compute the hedging ratio (∆) of an option,
allowing to hedge each option with its underlying instrument and so reducing the model risk due
to the fact the model has only one factor.

Disclaimer: The views expressed here are those of the author and not necessarily those of the
Bank for International Settlements.
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