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Abstract

The primary purpose of this paper is to model uncertain digital objects in view
of financial risk management in an open network. We have made an abstraction of
the objects and defined the security token, which is abbreviated into a word coinage
setok. Each setok has its price, values, and timestamp on it as well as the main
contents. Not only the price but also the values can be uncertain and may cause
risks.

A number of properties of the setok are defined. They include value response
to compromise, price response to compromise, refundability, tradability, online di-
visibility, and offline divisibility. Then, in search of risk-hedging tools, a derivative
written not on the price but on the value is introduced. The derivative investi-
gated is a simple European-type call option. With the help of stochastic theory,
we have derived several option-pricing formulae. These formulae do not require any
divisibility of the underlying setok.

With respect to applications, an inverse estimation of compromise probability
is studied. The stochastic approach is extended to deal with a jump caused by the
compromise and the resultant revocation. This extension gives a partial differential
equation (PDE) to price the call option; given a set of parameters including the
compromise probability, the PDE can tell us the option price. By making an inverse
use of this, we can estimate the risk of compromise.

Key words: network security, digital object, setok, risk hedge, derivative, option
pricing.
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1 Introduction

Applied cryptography [1] opens a door to a market of digital products in a network society.
With the help of advertisement attached!, the products do not necessarily have positive
prices; they can be free of charge. In this case, the recipients may not think of them
as products. So we will use the phrase digital objects, instead of digital products, in the
following.

Since digital data in general can keep their original bit strings virtually forever, one
may expect that there would be no risk of change in qualities of digital objects. This is,
unfortunately, not the case.

In addition to the prices, digital objects likely have other numerical values. For exam-
ple, digital certificates may have confidence values or trust metrics [2]-[7]. Access-grant
tickets may have priority numbers or QoS (Quality-of-Service) values reserved [8]-[11].
Digital images and multimedia contents may have confidence values about their inno-
cence in terms of copyright protection [12], [13]. They may have their rank in a hit chart.
Any product may be associated with some insurance contracts stating how much will be
paid in case of a significant damage. Reward points may be attached. These additional
values may change over time and cause risks.

A common way for hedging risks is to introduce financial derivatives or options written
on underlying assets. For example, a European call option on a stock is a right to buy one
share of stock at a particular exercise date in the future for a specified price. This price
is called a strike price. If the stock price at the exercise date exceeds the strike price, the
owner of the option will exercise it and buy the stock at the strike price. If the stock price
at the exercise date is cheaper than the strike price, the owner will not exercise it; he
would have neither gain nor loss in this case. With respect to such financial derivatives,
a wide variety of studies, pricing theories and their applications in particular, have been
developed. They were encouraged a lot by the seminal paper by Black and Scholes [14].

Then, which sort of theories can we develop for the uncertain digital objects? First of
all, theories need models; we have to identify what are primary features of the objects.
The purpose of this paper is to introduce a framework on this identification, and then to
develop a basic theory of derivatives in the model identified. From the engineering point of
view, we also explore new applications by using the framework. Specifically, the paper is
organized as follows. First, in Section 2, we model uncertain digital objects as a security
token, which will be abbreviated into a word coinage setok in contrast to an existing
word stock. Written on a tradable setok, a European call option is defined and priced in
Section 3, where discrete-time models are firstly studied. The last part of Section 3 deals
with a continuous-time model. By using a well-known lemma in stochastic calculus, an
option-pricing formula is derived. A comprehensive analysis of the formula is provided
as well. Subsequently Section 4 makes an attempt to use the option-pricing technique
for the inverse estimation of compromise probability. After a survey of related works in
Section 5, Section 6 concludes the paper.

!The advertisement may be attached either to the products or to the protocol messages which carry
the products.



2 Security Token

2.1 Network Society

We start with our basic architecture of the network society, which is illustrated in Fig. 1.
The observation to have this architecture is as follows:

(Object Provider) Copyright management and related technical maintenance are not
easy and trivial tasks with respect to digital objects. Management and mainte-
nance of network-security infrastructure (e.g. public-key infrastructure) are not,
either. These tasks may require some sort of trustworthiness and reliability. We
need specialized entities which are eligible for them and thus can provide digital
objects involved. Typically, they are trusted organizations or licensed firms. Object
providers would be happier if the objects they provide are distributed and circu-
lated more frequently in larger amounts; it would improve their reputation and/or
make attached advertisement more profitable. They would have a motivation to
give rewards for active usage of the objects. They are able to keep in touch with
the up-to-date market information.

(Object Server) Selling digital objects to untrusted customers through poor communi-
cation channels is another difficult and non-trivial task. We need specialized entities
which can do it and have a good connection with object providers. Typically, they
are trusted organizations or firms; they can be less trusted in comparison with ob-
ject providers but they must be more trusted than customers. Due to the rewards
from object providers as well as their basic business reasons, object servers would
like to enhance their trading activities with customers. One may think that it is
easy to sell more because copying digital data in general is so easy. However, as
already implied, this is not true for digital objects; if the object providers work
well, they are the only entities who can increase the number of the objects either by
copying or by creating a new version. Thus object servers would have a motivation
to re-circulate the objects. They may be able to get the objects back from their
customers in exchange for some refund. The refund may depend on the price and/or
values of the object. Object servers are able to keep in touch with the up-to-date
market information.

(Customer) We do not trust individuals in terms of (i) their own behaviour, (ii) their
financial situation, and (iii) resources (for communication and computation) avail-
able to them. Some customers are able to keep in touch with the up-to-date market
information but the others are not.
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Figure 1: Basic architecture of the network society. Boxes with wider lines indicate that
the entities inside are more trusted. The object provider and server are able to keep in
touch with the up-to-date market information. Some customers are able to keep in touch
with the up-to-date market information but the others are not. Due to better reputation
and/or advertisement profits, the provider would be happier if the objects are distributed
and circulated more frequently in larger amounts. The refund may depend on the price
and/or values of the object. The payment from a customer may be regarded as a deposit,
depending on the situation; this architecture can model a rental system as well.

2.2 Setok

In order to have a good fit for the basic architecture, we model uncertain digital objects
as follows.

Definition 2.1 (Setok) A security token or setok is a digital material which nomi-
nally contains the following four attributes:

e contents which may include MAC (Message Authentication Code), digital signa-
tures, or other security-related control sequences if necessary,

e a non-negative explicit price (denoted by S) which is paid when the setok is pur-
chased by a customer,

e a set of non-negative explicit values (denoted by Vi, Vs, - -+, Vi, where m is referred
to as the dimension of the explicit values) which represents some qualities of the
contents in a way that larger values of each element imply better qualities regarding
the feature represented by the element when the setok is purchased, and

e o timestamp which indicates when the setok is purchased,



and 1s associated with
e a non-negative implicit price (denoted by S) and

e a set of non-negative implicit values (denoted by Vi, Vs, - - -, V,, where n is referred
to as the dimension of implicit values)

in the following way.

o The explicit price is specified as the occurrence of a price-interpretation pro-
cess Y(t)=y(t,S (t)); i.e. the specific numerical value y (to, S (o)) is written as
the explicit price of the setok which is purchased at time t = ty. Fach occurrence
y (t,S (t)) is called the up-to-date price at time t. The price-interpretation process
is a non-negative process and also called the up-to-date price process. y = (t, s)
is called a price-interpretation function and monotone increasing with respect
to s. Customers are unable to change the explicit price.

o The explicit values are specified as the occurrences of value-interpretation pro-
cesses Hi(t)=h(t, Vi(t), Va(t), ---, Val(t)), Ha(t)=ho(t, Vi(t), Va(t), ---, Va(t)),
o, Hy(8)=hm(t, Vi(t), Va(t), ---, Va(t)); ie. the specific numerical value h;(to,
Vi(to), Va(te), - -+, Va(to)) is written as the i-th explicit value of the setok which is
purchased at time t =ty (1 = 1, 2, ---, m). Each occurrence h;(t, Vi(t), Va(t),
-+, Va(t)) is called the i-th up-to-date value at time t. The value-interpretation
processes are mon-negative processes, and also called the up-to-date value pro-
cesses. hi(t, vy, vy, ---, vy), ho(t, vi, Vo, -+, V), ---, hp(t, v1, Vo, ---, V)
are called value-interpretation functions. Customers are unable to change the
explicit values.

Definition 2.1 accepts not only purely financial digital materials but also digital com-
modities as setoks; we have not specified the contents.

Customers are untrusted. Depending on the payment scheme, customers may be even
anonymous when they buy setoks. So each payment must be settled on site in exchange of
the corresponding pieces of the setok. This should be done in a secure way; no customer
can exploit a setok without payment, and no server can exploit a payment without sending
the setok. Servers are trusted but we do not want to allow customers to lay frame-up
accusation against servers. Thus setoks are transmitted to customers in pieces; e.g. “three
pieces” are possible but “two and a half pieces” are impossible. In other words, we do not
assume any accountability. A piece of setok will be referred to as a share of the setok.

A setok in the market is denoted by (S; Y; Vi, Vo, ---, Vi3 Hy, Hy, ---, Hp,) or
sometimes shorthandly by (S, Y; V, H, n, m). Likewise, a share of the setok already
purchased and held by someone is denoted by (S; Vi, Vi, ---, V5 to) or sometimes

shorthandly by (S; V, m; to).

The price-interpretation function may be able to model the effect of taxes, transaction
costs, regulatory issues, and so on. The value-interpretation functions may be able to
model the effect of security policies, regulatory issues, editorial policies, transmission de-
lay, and so on. Suppose that we make an electronic version of a stock in a way that each



share of the setok has the explicit values which tell the firm’s information evaluated some-
how. This evaluation may include editorial or aggregation procedures. It is impractical
to write every history of the firm on a setok.

The “up-to-date” processes, Y (t) and H(t), are observable in the market and hence are
adapted processes. This is a rather heuristic statement. In most occasions, it is sufficient
to understand that we can observe any up-to-date processes as long as we have been get
in touch with the market. For those who have studied probabilistic measure theory and
prefer more rigorous statements, we place a formal definition as follows.

Definition 2.2 (Adapted Process) Let (2,1, P) be the probability space whose sam-
ple space Q is composed of all the possible states of the world considered. Let (E,¢)
be the measurable space whose o-algebra e is generated by all the random variables in
the market considered. A stochastic process, sometimes shorthandly referred to as a
process, in the space E endowed with ¢ is a family (Xt)te® of random variables defined
on (Q,T, P), where © denotes the set of time indices*. A filtration is an increasing family
of o-algebras included in T.

Let (Ft)tGG be the natural filtration obtained from a filtration generated by all the
stochastic processes in E. If X; is I';-measurable for any t € ©, the process (Xt)te@ IS
said to be adapted to I';. In this framework, such (X), @ is called an adapted process.

It is obvious that processes observable in the market are adapted processes.
Note that

e some of the implicit processes S(t), Vi(t), Va(t), - -+, Va(t) may be not adapted
processes even if
— the explicit value is one-dimensional (i.e. m = 1),

— both of the price/value interpretation functions are easy to compute, and
strictly monotone increasing functions with respect to some implicit price
or implicit values, and

— the other implicit price/value processes are adapted processes.

For not strictly monotone increasing functions, we may easily accept the note above. The
following is a trivial example:

Example 2.1 Let us consider a setok (S,Y;V,H,n,1) with a price-interpretation func-
tion y(t,s) = s and a value-interpretation function hi(t, vi, ve, ---, v,)= ho where hgy
18 a deterministic constant. y is strictly monotone increasing with respect to s but hy s
not strictly monotone increasing with respect to any v;. The implicit price process is an
adapted process but the implicit value processes are not.

2Intuitively, ®=R (the set of real numbers) corresponds to a continuous-time model while @ CZ (the
set of integers) corresponds to a discrete-time model.
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However, at a first glance, it would be more difficult or counter-intuitive, especially
for those who are unfamiliar with information-security engineering, to see that strictly
monotone increasing interpretation functions do not always guarantee the adaptation.
We demonstrate it by using a one-way hash function.

Example 2.2 Let us consider a setok (S,Y;V,H,2,1) with a price-interpretation func-
tion y(t,s) = s and a value-interpretation function

hi(t,v1,v2) = h(vz) +p- v

where h(-) : N — Z, is a one-way hash function, N = {1,2,3,---} is the set of positive
integers, and Z,={0,1,2,---,p—1}. Let us suppose Vi(t) € {0,1}, Va(t) € Z for anyt €
T. Then y is strictly monotone increasing with respect to s, and hy s strictly monotone
increasing with respect to vi. The implicit price process is an adapted process. Vi is also
an adapted process because Hy(t) > p implies Vi(t) = 1 and Hy(t) < p implies V;(t) = 0.
Nevertheless, Vs, is not an adapted process.

Implicit processes often remind us of the world behind, whereas interpretation /up-to-
date processes often remind us of the market.

Remark 2.1 Regarding stochastic variables, we follow the conventions in notation:

e Stochastic variables often appear with suppression in the following part of the paper;
e.g. for readability reasons, we would write S instead of S(t) nor S(t)[w] where
w € Q) and 2 is the universe of the probability space considered.

e (1) An occurrence of a stochastic variable, and (2) corresponding arguments in
functions describing other processes by the use of the stochastic variable, are usually
written in small letters.

In order to demonstrate the convention stated in Remark 2.1, we remind you of a
well-known formula in stochastic calculus, usually called It6’s Lemma, which will be used
later in this paper. Throughout the paper, a matrix or vector transpose is denoted by .

Theorem 2.1 (It6) Let us consider an n-dimensional stochastic process X = (X, Xo,
-+, Xu)* and let each component have a dynamics given by

dX;(t) = wi(t)dt + i 03 (H)dW; (2)

where 11;(t) and 0;;(t) are adapted processes and Wy, Wy, -+, Wy are d independent
Wiener processes. Let us define a d-dimensional Wiener process by

W = (Wl, WQ, .- ',Wd)*.

7



Let us furthermore define a process F(t) by
Ft)=f(t X (),

where f : R, x R" — R is a CY?-mapping, i.e. continuously differentiable with respect to
t and twice continuously differentiable with respect to each x;. R is the set of real numbers
and R 1s the set of non-negative real numbers.

Then the process has a stochastic differential given by

AW,

i=1j=1

_ -~ 0f
dF—{at-f—ZM 3 ”a 5 }dt+z

where the row vector o; is the i-th row of the diffusion matrix o defined by

011 012 -*** Oud

021 022 '+ 02
o =

On1 Opn2 -~ Onpd

and the matriz C is given by C' = oo™*.
Alternatively, the differential is given by

dF = = dt+; P, X;Zl axj dX;dX;,

with the following formal multiplication table

(dt)*> = 0,
dt-dw = 0,
dW;)? = dt, i=1,2,---.d,
AW, -dW,; = 0, i #j.

2.3 Price and Value

Sufficient information to determine the implicit price and values is not always obtained
through market observation, although the up-to-date price and values are observable in
the market. Let us consider in more detail about the relationship or correlation among
the implicit/up-to-date price and values.

The explicit values represent some qualities of the setok. They depend on the implicit
values. The bridge between them is the value-interpretation functions. Changes in the
implicit values may be relaxed through the interpretation. They may be exaggerated,
too.

Let us suppose a value-interpretation function h; which is monotone increasing with
respect to the j-th implicit value. In this case, intuitively, the implicit value V; also rep-
resents some sort of quality of the material. Let us suppose that some sort of compromise
has just reduced the j-th implicit value to be zero. Hopefully best efforts are made to



make the up-to-date values reflect this emergency well enough. The efforts may include,
for example, implementing the underlying directory system with real-time revocation as
well as periodical/regular update. From the viewpoint of setok, an ideal situation is
defined as follows.

Definition 2.3 (Value Response to Compromise) Let a setok (S,Y;V, H,n,m) have
one or more value-interpretation functions which are monotone increasing with respect to
one or more implicit values. Let {V;,, Vj,, -+, Vi, } be the set of all such implicit value
processes.

Then, the setok is said to be compromised if and only if V}, (t)=V},(t)=--=V},(t) =
0. This setok is said to be compromise-responsive in value if and only if the following
condition is satisfied.

e For any h; which is monotone increasing with respect to one or more implicit values
Vi, Vi -, Vi,, a compromise Vj, (t) =V}, (t)=--=V},(t) = 0 implies H;(t) = 0.

jir Vier °°

Do you accept a positive price for “compromised” material? The answer may be not
unique and depend on the relationship between the contents and the implicit/explicit
values. We shall define a special, but easier to accept, situation.

Definition 2.4 (Price Response to Compromise) Let a setok (S,Y;V, H,n,m) have
one or more value-interpretation functions which are monotone increasing with respect to
one or more implicit values. Let {V;,, Vi,, -+, Vi, } be the set of all such implicit value
Processes.

This setok is said to be compromise-responsive in price if and only if the compro-
mise V;, (t) =V}, (t)=---=Vj,(t) = 0 implies Y (t) = 0.

2.4 Resale of Setoks

In our architecture, object servers would have a motivation to re-circulate the objects
they have sold. They may be able to get the objects back from their customers in ex-
change for some refund, which would in turn motivate the customers to return the objects.
This refund may depend on the price and/or values of the object. Formally, we define
refundability and tradability.

Definition 2.5 (Refundability) A share of setok is said to be T-refundable if and
only if the following two conditions are satisfied:

e The explicit price is positive.

e The holder can sell it at the explicit price whenever he wants during a set of time
intervals T.



T is called a refundable period and allowed to be composed of open and closed time
intervals; all of the forms [Ty, Ty|, [Tr,Tv), (Tr,Ty], and (T1,Ty) (and set of them)
are available. The refundable period can be either deterministic or stochastic. When
the context does not need the refundable period, we can just say “refundable” instead of
“T-refundable”.

In particular, a share of setok is said to be co-refundable if and only if it is [t, 00)-
refundable where ty is the timestamp on it.

Definition 2.6 (Strict Refundability) A share of setok is said to be strictly T'-
refundable if and only if the following three conditions are satisfied:

o [t is T-refundable.
o The refundable period T is deterministic.

e The holder cannot sell it at any price when it is out of the refundable period T.

When the context does not need the refundable period, we can just say “strictly refundable”
instead of “strictly T-refundable”.

In particular, a strictly O-refundable setok is said to be unrefundable where () is the
empty set.

Definition 2.7 At time t, a strictly T-refundable setok with non-empty refundable period
T is said to be still refundable if and only if there erists a time t' such that t' >t and
t' € T where t is the current time.

There are several important things to be pointed out. Firstly, note that we have
defined the refundability with respect to a share of setok. Even for the same setok, shares
sold at different time could have different refundable periods; the refundability of (S; V/,
m; to) and that of (S; V, m; 1) (t1 # to) are not necessarily the same. This allows
a dynamic change of management policies of a setok. For example, let us suppose a
setok which has been managed so far in a way that all the shares are strictly refundable
and the refundable period is very long. This policy gives an assurance to customers,
but could cause too much financial load (e.g. reserve funds) on the server and/or too
much administrative load (e.g. security-parameter directory) on the provider. If needed,
the policy can be changed in a way that shares will be sold with a shorter refundable
period, or even sold with no refundability, from now on. However, due to the former
strict refundability, the refundable periods of the shares already sold cannot be changed
accordingly. If their refundable periods were stochastic, the corresponding change would
be (not mandatory but) possible. Thus, in our framework, we can accommodate a wide
variety of situations by specifying which kind of refundability is used.

It should be also noted that the refund of a setok is possible only at its explicit price
S. Changes in values are not considered. This can model a rental system with deposit, for
example. However, depending on the applications, a more flexible resale may be allowed.
This is easier if the explicit value is one-dimensional.
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Definition 2.8 (Single-Valued Setok) A setok is said to be single-valued if and only
if it has one-dimensional explicit value. In the case of a single-valued setok, we often omit
the subscript “1” when we denote the explicit value, the corresponding value-interpretation
function, and the corresponding value-interpretation process. Hence we may write

V = H(ty) = h(to, Vi(to), Va(to), - - -, Va(to))-

Definition 2.9 (Tradability) A share of single-valued setok is said to be T-tradable
if and only if the following two conditions are satisfied:

o The explicit value V is positive.

e Whenever he wishes during a set of time intervals T, the value-interpretation process
1s positive and the holder of the setok can sell it. This resale is possible only at the
value-proportional price S, defined by

1%
h(t, Vi(t), Va(t), - - -, Vn(t))y (t,5(t))

Sp =

T is called a tradable period and allowed to be composed of open and closed time
intervals; all of the forms [Ty, Ty|, 11, Tv), (Tr, Ty, and (Tr,Ty) (and a set of them)
are available. The tradable period can be either deterministic or stochastic.

In particular, a setok is said to be oo-tradable if and only if it is [ty, 00)-tradable
where tq is the timestamp on it.

It should be noted here that S, can have a zero occurrence; there can be a trade at a
price of zero.

Definition 2.10 (Strict Tradability) A setok is said to be strictly T-tradable if and
only if the following three conditions are satisfied:

e The setok is T-tradable.
e The tradable period T 1is deterministic.

e The holder of it cannot sell it at any price when it is out of the tradable period T .

In particular, a strictly O-tradable setok is said to be untradable.

Definition 2.11 A strictly T-tradable setok with non-empty tradable period T is said to
be still tradable if and only if there exists a time t' such that t' >t and t' € T where t
1S the current time.

11



We have mentioned how flexible our refundability definition is. Likewise, we can
accommodate a wide variety of situations by specifying which kind of tradability is used.
Deterministic or stochastic? If stochastic, how?

Stocks are virtually valid forever as long as the firm survives. However, for information-
security reasons, setoks likely have relatively short life time. So the period restriction by
T in Definition 2.5 and in Definition 2.9 is one of the important features of such setoks.
Hence we conjecture that the setok theory would be in close relation to project-investment
theory; typically, project opportunities can exist for the time being but not forever.

2.5 Divisibility
Suppose a situation in which I need a single-valued setok (S,Y;V, H,1,1) with an explicit
value of 100. And suppose that I am so unlucky that the current market board says

H(t) = 95. Shall I buy two shares of the setok? Do I have to reconsider my purchase
plan? This annoyance depends on the divisibility of the setok.

Definition 2.12 (Online Divisibility) A setok (S,Y;V, H,n,m) is said to be online-
divisible if and only if the following condition is satisfied.

e Whenever the occurrence of the price-interpretation process is positive, anyone can
purchase arbitrary fraction of the setok with keeping proportional explicit values;
i.e. at an arbitrary order price S, > 0, he can buy the setok at at the explicit price
S. and explicit values

Se
Y(to)

assigned where ty is the timestamp on it.

hi(to, V1(t()), ‘/Q(t()), T, Vn(to)) (Z = 1, 2, Tt m)

It should be noted here that we make an order by specifying the order price, not by
specifying the explicit values. This may decrease communication overhead.
We may face a similar annoyance when we are going to sell a share of setok.

Definition 2.13 (Offline Divisibility) A share of setok (S; Vi, Va, -+, Vin; o) which has
a positive explicit price S is said to be offline-divisible if and only if the holder of it
can divide it into two pieces, (8% VL, Vi, -+ V3iity) and (S%VEVE .-+ V2:t,), in a
price-proportional manner, i.e.

St+582=5 5'>0, 52>0

and

|
| @
|

5 (=1,21=1,2,---,m).
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3 Call Option on a Simple Setok

3.1 Simple Settings

In a network life, we would want to pay for digital products in electronic cash. Electronic
cash systems could be more efficient if the monetary value of each cash or coin is less
granular [15]. Some systems have only a few kinds of fixed-value coins. Therefore, if we
want to allow as wide variety of electronic cash systems as possible, a fixed price would
be helpful. This section assumes a setok whose price-interpretation process is an identity
process.

We also assume here a strictly T-tradable setok where T # (). We have defined
tradability only for single-valued setoks. Hence we consider a single-valued setok in this
section. In the derivative theory, tradability and divisibility is important with respect to
the completeness and efficiency of the market. Since a rigorous discussion would take
a long time, we recommend those who are interested to consult good literatures such as
[16]-]22]. For those who are less interested or otherwise too busy, it would be sufficient
to see how the pricing procedure below in this section is simple and sound.

We do not assume any divisibility of the setok. This is because we prefer settings less
restrictive against security protocol design and implementation.

The final important decision is how to regard the setok as a “project” during the
time interval we keep it. Our framework considers the contents, which suggests that the
possession of a setok might yield something. Again, this section chooses the simplest
story: nothing happens.

With some more specifications made, we have the following assumptions.

Assumption 3.1 In Section 3, a single-valued setok (S,Y;V, H,n, 1) with the following
properties is studied.

1. The price-interpretation process is an identity process, i.e. Y (t) =1 for all t.
The setok is not online divisible.

The setok is not offline divisible

No one can go short for the setok®.

Each share of the setok is strictly T-tradable.

S T

The tradable period T is composed of a single time interval of a fired positive length
T. We will make it explicit by saying “T'-tradable”, where T is not boldfaced.

7. The possession of the setok has no meaning as a project and hence, in a financial
term, yields no dividends.

8. All the up-to-date and implicit value processes are positive and finite.

3 A short position is a financial jargon. When we say “going short for three shares of a stock” at time
t = 0, it means that we have sold three units of the stock at time ¢ = 0. A mathematical interpretation
will appear later in Assumption 3.2.
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In the real world, as mentioned in Section 1, one of the simplest derivatives is European
call options written on a stock. Stocks are supposed to be tradable and divisible. It is
well-known that a seminal paper by Black and Scholes [14] presents a complete general
equilibrium theory of pricing this kind of options. Their results are attractive particularly
because the final formula is a function of observable variables. A key idea for deriving the
formula is to replicate a riskless asset by using the option and the underlying stock. Can
we borrow the Black-Scholes formula as it is? — Fortunately or unfortunately, we have
assumed a fixed-price setok. We are not able to write any option on the price. What we
can do is with respect to the values.

Definition 3.1 (A European Call) We consider a single-valued setok (S,Y;V,H,n,1)
which satisfies Assumption 3.1. Let T represent the fized length of the strict tradability.

Then, o European call option on the setok, purchased at time t = 1y, is defined as
a deriwative which provides a right to buy one share of the setok with a reserved explicit
value K at a particular time T, < to + T in the future for its fized price, 1, regardless of
the up-to-date value H(T,,) at t = T,,. The reserved value K is called the strike value
or the exercise value, and T, is called the exercise date or the maturity date, or
just simply the maturity.

It should be noted that there is no obligation for the holder of the option to exercise
the right on the exercise date. Obviously, he will exercise it if H(7,,) < K and he won’t
if H(T,,) > K.

Our final setting statement is assumptions on the market.

Assumption 3.2 (Ideal Market) We assume an ideal market which satisfies the fol-
lowing conditions.

(a) There are no transaction costs of trading both in time and in money: any transaction
can be completed immediately, free of charge.

(b) The market is completely liquid, i.e. it is always® possible to buy and/or sell un-
limited quantities. In particular, it is possible to borrow unlimited amounts from the
bank (by selling bonds® short).

(c) There is no bid-ask spread, i.e. the selling price is equal to the buying price.

(d) The market is free of arbitrage.

The four items above are common for both the setok market and the option market.
In addition, the option market is assumed to have the following properties as well.

4Rigorously speaking in terms of probability measure theory, “always” means “at any time index in
the probability space considered”.

5 An introduction of bonds and bank accounts will soon appear around Definition 3.2, Assumption 3.3,
Definition 3.3, and Proposition 3.1.
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(e) The option can be bought and sold on a market at any fraction.

(f) Anyone can go short for the option.

In mathematical terms, (e) and (f) mean that any real number is allowed to appear in
a portfolio with respect to the amount of the option.

We consider different architectures for setoks and for options. Let us have a more close
look at the difference and the common features by referring to the items in Assumption 3.1
and in Assumption 3.2.

The common features, (a), (b), and (c) in Assumption 3.2, are for simplicity. (a) for
setoks is supported by secure timestamps; non-negligible delay may occur in the architec-
ture of the setok world, but no one can abuse the delay for cheating. (d) in Assumption 3.2
is the most common in financial theory. The meaning of arbitrage is explained when we
price the option subsequently in 3.2.

With respect to setoks, no divisibility is assumed (2. and 3. in Assumption 3.1).
Going short is not allowed, either (4. in Assumption 3.1). This is due to the architec-
ture described in 2.1 at the beginning of Section 2. By contrast, with respect to options,
divisibility is assumed ((e) in Assumption 3.2) and going short is allowed ((f) in As-
sumption 3.2). This implies that participation in the setok-option market has the same
requirements as in the conventional option market: security and reliability of the resources
are good enough, and participants are trusted enough.

3.2 Pricing in Discrete-Time Models
3.2.1 Single-Period Binomial Model

This subsection is the first attempt to show option pricing in the setok world. We have
Assumption 3.1. To get a simple but good and instructive start, we furthermore assume
that the implicit value process V' is one-dimensional, i7.e. n = 1, and that the value-
interpretation function is a deterministic function h(v) such that h(v) > 0 for any v > 0.
Furthermore, for a readability reason, we assign the time unity so that 7,, = 1.

The simplest model used here is a single-period binomial model described in Fig. 2.
At present (t = 0), the up-to-date value is H(0) = Hy = h(Vj). At the maturity, there are
two possible states: H(T},)[up| = h(u-Vp) and H(T,,)[down] = h(d-V,) where d and u are
positive constants such that 0 < d < 1 < u. The former, the state after upward change,
occurs with probability p,. Hence the latter, the state after downward change, occurs
with probability 1 — p,. You do not know these probabilities. Please find a reasonable
price of the European call option. This is the problem to be solved below.
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Figure 2: A single-period binomial model for pricing the European call option. The setok
price is kept to be 1 all the time. At the beginning of the period (¢t = 0), the up-to-date
value of the setok is h(Vp). At the end of the period (¢ = T}, = 1), i.e. the maturity
of the option, either the “upward” or the “downward” state has occurred: the former is
with the option payoff C, and the up-to-date value of the setok h(uVj) while the latter
is with Cy and h(dVj), where 0 < d < 1 < wu. Although this illustration shows that
the upward-change probability is p, and the downward-change probability is 1 — p,, the
pricing does not require these probabilities. They appear here just to tell you that the
two states are the only possible states at t = 1. It is assumed that h(uVy) # h(dVh),
which differentiates the two states in the market as well as in the implicit world.

Firstly, we find that the option has a payoff of

max{0, K — h(uVp)}

Cu = h(uVp)

(1)

in the case of the upward change. That is, if h(uly) < K, the holder of the option
exercises it; he buys one share of the setok at the price 1, with the strike value K. Thanks
to Definition 2.9, Assumption 3.1, and Assumption 3.2, the holder can immediately resale
this share for the value-proportional price

(2)

and achieve a positive gain of

_ K — h(uVp)

—1
% h(uVy)

(3)
He is not obliged to exercise the option but he does. This is what is called the ‘greedy’
assumption in economics: anyone able to obtain anything of value for free will not hesitate
to do so. On the contrary, if h(uVy) > K, the holder of the option does not exercise it
hence gets nothing. Eqn. (1) is a mathematical representation of this. Likewise, we find
that the option has a payoff of

max{0, K — h(dVy)}
h(dVo)

Cy= (4)
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in the case of the downward change.

Our second concern, and the very key to the solution, is obtained by asking financial
people to tell us what is reasonable. They surely tell us to price the option in a way that
no arbitrage opportunity is available. Yes, we have assumed no-arbitrage condition in
the statement (d) of Assumption 3.2. Then, what is an arbitrage opportunity? To see
this, although this subsection investigates discrete-time models, let us be patient with a
continuous-time setting for the time being.

In the financial theory, there is a riskless asset with short rate. Intuitively, the short
rate can be interpreted as the riskless rate of interest over an infinitesimal time interval
[t,t + dt]. Formally, we use the following typical financial definitions (Definitions3.2 and
3.3) and assumptions (Assumption 3.3).

Definition 3.2 (Zero-Coupon Bond) A zero-coupon bond® with maturity date
T is a contract which guarantees the holder a unit of currency, say, 1 dollar, to be paid
on the date T'. It is sometimes called a T-bond, and its price at time t is typically denoted

by p(t,T).

Assumption 3.3 (Rich and Regular Bond Market) We assume a sufficiently rich
and regular bond market, i.e.

e There exists a frictionless market for T-bonds for every T > 0.
e p(t,t) =1 holds for all t.

e For each fized t, the bond price p(t,T) is differentiable with respect to the maturity
date T.

A basic requirement for an economy is that there is no strategy that brings a positive
monetary gain without any risk. The second assumption p(¢,t) = 1 is necessary for this
purpose. This is the no-arbitrage requirement. If p(¢,¢) were smaller than 1, then we may
buy the bond at the price p(t,t) and then immediately obtain 1 dollar; hence a positive
gain 1 — p(t,t) without any risk is possible. If p(t,t) were larger than 1, then we may
write a bond, obtain p(¢,t), and then immediately pay 1 dollar, which yields a positive
gain p(t,t) — 1 without any risk.

Definition 3.3 (Short Rate and Money Account) Let p(t,T) be the price of T-bond
at time t under Assumption 3.5.

e The instantaneous forward rate with maturity 7', contracted at t, is defined

by
_Olnp(t,T)

or

6This is called zero-coupon bond because originally dividends were, if they were contracted, distributed
as coupons attached and bonds without dividends had no coupon.

f@,T) =
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e The instantaneous short rate at time t is defined by
r(t) = f(t,1).
e The money account process B is defined by a dynamics

dB(t) = r(t)B(t)dt
{ B(0) = 1.

The money account is risk-free because its dynamics has nothing but a drift term. This
term is usually called a dit-term. The simplest model assumes that the short rate is a
non-negative constant. In this particular case, the money account process becomes

B(t) = exp(rt). (5)

The discrete-time counterpart of this is a constant short rate r; with the following
properties:

e If we buy a riskless 7T;,,-bond for the price 1 dollar at time £ = 0, then we will surely
obtain 1 4 (> 1) dollars at the maturity ¢t = T,,,(= 1).

e If we write or sell a riskless 7;,-bond for the price 1 dollar at time ¢ = 0, then all
we have to do at t = T}, is to pay 1 + r;(> 1) dollars.

In the following, we will assume that r; is a deterministic constant.

Proposition 3.1 (Riskless Rate of Return) Let r; be the constant short rate.
In the no arbitrage market, every riskless, i.e. fized-income, portfolio (an asset or
combination of some assets) has the rate of return which is equal to ry.

Proof :
If there is a riskless portfolio with the rate ' > r, then you can achieve an arbitrary
large amount of gain (r' — rf)M by the following steps with probability 1.

1. At time t = 0, go short for the bank and sell the riskless 7;,-bond to get M dollars.

2. Immediately after that, i.e. also at ¢ = 0, buy the portfolio by using all the M
dollars.

3. At time t = T,,, sell the portfolio for the price (1 + )M dollars and pay (1 +75)M
dollars for the bond.

Likewise, if ' < rf, you can surely achieve an arbitrary large amount of gain (ry —7') M.
Such a “free-lunch” dream is not permissible and hence 7’ = r;. Q.E.D.

The next one is another exercise for the use of no arbitrage, and gives an implicit
constraint on the model in this section.
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Lemma 3.1 Let ry be the constant short rate.

In the binomial single-period model described in Fig. 2, the following must hold:
h(Vo)

max {h(uVy), h(dVy)}

S1+’I‘f.

Proof :

If h(Vy)/ max{h(uVy),h(dVy)} > 1+ r;, then you can achieve an arbitrary large
amount of gain M {h(Vp)/ max {h(uVj), h(dVo)} — (1 +rf)} by the following steps with
probability 1.

1. At time ¢t = 0, go short for the bank and sell the riskless 7;,-bond to get M dollars.

2. Immediately after that, i.e. also at ¢ = 0, buy M shares of the setok by using all
the M dollars.

3. At time t = T,,, sell all the setok for the value-proportional price. This is possible
because the setok is strictly T-tradable and T > T,,.

4. The value-proportional price is at least h(V})/ max{h(uVy), h(dVy)}. Hence what
you obtain in total is at least Mh(Vy)/ max{h(uVj), h(dVp)}.

5. At the same time, you pay (1 + ;)M dollars for the bond.

This is not permissible. Therefore,

h(Vo)
max {h(uVp), h(dVp)}

§1+7‘f.

Q.E.D.

Now, finally we have come back on the track. Our task is to find a riskless portfolio
composed of one share of setok and M European call options. Let C be the price of one
share of the option (at ¢ = 0). Then our initial investment is given by

1+ MC. (6)

In order to achieve risk-freeness, the portfolio must have exactly the same payoff at
the maturity ¢t = T,, = 1 regardless of the state (upward or downward). That is,

h(Vo)
h(uVs)

h(Vo)
h(dVo)

-1+ MC, =

1+ MGy (7)

Note that the first term of each side in Eqn. (7) represents the payoff resulting from one
share of the setok. This is possible because the setok is strictly T-tradable and T > T,,,.
So now we can understand that

e the riskless portfolio strategy is possible if there exists a number M which satisfies
Eqn. (7) and is allowed in the setok/option market assumed here.
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After a manipulation on Eqn. (7) with the help of h(uV}) # h(dVy), we have

W) [ 1 I
M=z.-a {h(uvo) - h(dvo>} (®)

Because of the assumption of the ideal option market (Assumption 3.2), the portfolio is
feasible regardless of the actual occurrence of M given by Eqn. (8); any M € R is allowed.

Thus we have established a riskless portfolio. In order to achieve no arbitrage, the
portfolio must have the rate of return exactly as low as the short rate r;. Therefore,
looking at the initial investment (Eqn. (6)), we notice that

14+7r)(1+MC) = :(EXZ?) -1+ MC, 9)

must hold. Let us insert Eqn. (8) into Eqn. (9), then, after some manipulations, we obtain

_ pCu + (1 - p)Cd

C
1+7‘f

(10)

where p is defined by

_ {(h(dVo)} " = (1+7y) {h(Vo)}*l_
{h(dVo)} ™" — {h(uVp)} ™

With a little bit more care added, the story above can be summarized as the following
theorem.

(11)

Theorem 3.1 (Option-Pricing Formula (Single-Period Model)) In the binomial
single-period model described in Fig. 2, let us consider a Furopean call option defined by
Definition 3.1 under Assumption 3.1 and Assumption 3.2. Choose the option’s maturity
T, as a time unit and assume that the short rate of interest is a constant ry for the time
unit. Let the price process and the strike value of the option be C(t) and K, respectively.
Then, the following pricing formula holds.

_ pCy + (1 _p)Cd
1+T'f

C(0)

where
max{0, K — h(uVp)}

h(uVs)

Cy =

max{0, K — h(dVy)}

Ca = h(dVa)

_ (@)} = (14 7p) {a(Ve)}
{h(dVo)} ' = {h(uVp)} "
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We are happy because the pricing does not need p,. We are also happy to see that
e no divisibility assumption on the setok is needed,

and that
e the setok is allowed to have a finite lifetime in tradability.

Both of them go well with the basic architecture which has been described in Fig. 1 at
the beginning of this paper. From the engineering point of view, such a less restrictive
situation most likely allows cheaper and more efficient protocols which are suitable for
general customers.

3.2.2 Hedging Probability and Martingale Measure

Before proceeding, let us further investigate the meaning of p in the pricing formula
(Theorem 3.1).

Lemma 3.2 (Hedging Probability) If h(Vy)/ min{h(uV}), h(dVy)} > 1 + 7y, the pa-
rameter p given in Theorem 3.1 satisfies 0 < p < 1. We refer to p as the hedging
probability.

Proof :

We have assumed that A(v) > 0 for any v > 0 and that h(uVp) # h(dVj).

When h(uVp) > h(dVp), we have h(Vy)/h(dVh) > 1+ r; because of the assumption
h(V)/ min{h(uVy), h(dVy)} > 1 + rp. h(uVy) > h(dVy) of course implies 1/h(dVy) >
1/h(uVjp). Consequently,

@)} = () (O} e — (A7)
@)} "= ()Y T A s — )

By using h(uVy) > h(dVp) and Lemma 3.1, we have h(Vy)/h(uVy) < 1+ 7. We
remember 1/h(dVy) > 1/h(uVy). Hence

M 7)Y (110) (A1) N Dl R
(@)} = {hVo)} " h() {ay — )

When h(uVy) < h(dVp), we have h(Vp)/h(uVy) > 1+ r; because of the assumption
h(Vo)/ min{h(uVp), h(dVp)} > 1+ r;. h(uVy) < h(dVj) of course implies 1/h(dVy) <
1/h(uV}). Consequently,

1+7p) — Ao
( f) h(uVo) > 0.

hVo) sy — 7wy}

1—p=
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By using h(uVp) < h(dVy) and Lemma 3.1, we have h(Vp)/h(dVy) < 1+ 15, We
remember 1/h(dVy) < 1/h(uVy). Hence

h(Ve
h(Eﬂgo)) - (1+7y) 50

p= =
h(%) {h(leo) - h(ulVo)}

Q.E.D.

Proposition 3.2 (A Martingale Measure) Let us discount the option price process
C(t) by the (riskless) short rate ¢, and define a process C(t) by

(0) = C(0)
1) = (1+r)7'CQ).
Then,

1. The hedging probability p provides a probability measure if we assign p as the prob-
ability of the upward change and 1 — p as the downward one.

2. Under this measure, the discounted price process C(t) has the martingale property
such that B B
C(0) = Ey [C (1)]

where Ey denotes the expectation operator conditioned by the available information
att=0.

Proof :

Let us denote the state after the upward change by “up”, and that by the downward
change by “down”.

The first statement is trivial from the definition given by Eqn. (11) and Lemma 3.2.

To prove the second statement, please note that the no-arbitrage requirement gives
C(1)[up] = C, and C(1)[down] = Cy; i.e. the option price at the maturity must be equal
to the payoff. Therefore, we have

E[C()] = pC1)up]+ (1 = p)O(1)[down]
= p(L+r)C(D)up] + (1 = p)(1+ 1)~ C(1)[down]
= (L+r) " H{pCu+ (1 - p)Ca}

Theorem 3.1 says that this equals to C'(0), which is by definition equal to C(0). Q.E.D.
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Figure 3: A multiple-period binomial model for pricing the European call option. For the
drawing convenience, the illustration has only N = 3 periods. The setok price is kept to
be 1 all the time. At the beginning of the period (¢ = 0), the up-to-date value of the setok
is h(Vp). At the end of the period (¢t = T,, = 1), i.e. the maturity of the option, we have
N possible states denoted by the number 5 of upward changes which have occurred. We
also denote each state at time ¢ = /N by the number j of upward changes which have
occurred. We suppress the transition probability, which was denoted by p, and 1 — p, in
the case of the single-period model, because they are not used in the pricing. We assume

that H(i/N)[j] # H(i/N)[k] (j # k) for any i € {1,2,---, N}.

3.2.3 Multiple-Period Binomial Model

By repeating the binomial process, we can easily extend the single-period model to a
multiple-period model (Fig. 3). Let the maturity 7, be 1 as in the previous subsection
and divide the time interval [0, 1] into a large number of periods, say, N periods: [0,1/N),
[1/N,2/N), ---, [(N —1)/N,1). We must pay attention to three things:

(i) The short rate is defined as a rate of interest for a time unit. Hence we use r;/N for
each period.

(ii) At each edge of the periods, i.e. ¢ =i/N (i = 1,2,---, N), the state is determined
by how many upward changes have occurred. Let j be the number of upward changes
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which have occurred during the first ¢ periods. Then the up-to-date value of the setok at
t =1i/N is given by

h(WdVp) . (12)

In particular, the payoff of the option, which must be equal to the option price at the
maturity, is given by

. max{0, K — h(u/d"7Vp)}

c)lj) = o .

h(uidN=iVy)

(iii) In general, the hedging probability p depends on the state at the beginning of the
period. For the period [i/N, (i + 1)/N),

p =p (%) (4]

{h(d-wfd=Ve)} ™ — (14 %) {h(w!dV5)}
{h(d - wid=3Vo)} ™" — {h(u - wdi=1Vy)}

{h(Wd=Vo)} ' — (14 %) (W d9V5)}

= T 1 T 1 (14)
{h(wd=i*1Vg)} ~ — {h(w/ T d7Vp)}

(13)

if j upward changes have occurred during the first ¢ periods. Thus p is an adapted process.

Due to the property (iii), it is in general cumbersome to explicitly write the pricing
formula. Instead, we had better firstly show the backward algorithm for computation:
Algorithm 1:

1. Stand at ¢t = (N — 1)/N and compute C (%) [/]] G =0,1,---,N — 1) by using
(or carefully speaking, “interpreting”) Theorem 3.1 with the cares (i), (ii), and (iii)
listed above. Thus you have

— N GICG + 1]+ {1 —p (X2) 1Y)y
o (¥ =2 p () UICWG + 1)+ {1 —p (354 L]

T
1+

fOI‘j = Oala"'aN_ 17 where C(l)[]] (-7 = 0,1,"‘,N) and p(%) [.7] (] =
0,1,---, N — 1) are given by Eqn. (13) and Eqn. (14), respectively.

2. Go back to t = (N — 2)/N and note that C (%) [j] represents what you obtain if

you sell one share of option at the state j at ¢t = (N — 1)/N. Compute C (%) [7]
(j =0,1,---,N — 1) by using (or carefully speaking, “interpreting”) Theorem 3.1.
In place of the payoffs, use C ( ) [7]. Thus you have

- (N - 2) P (ER) e (B2 G+ 1+ {1-p (%2) 1} € (%2) ]

T
N 1+

where C’( ) 7] (5 = .-+, N — 1) are given by the previous step. p (%) [7]
(j=0,1,---, N — 2) are given by Eqn. (14).
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3. Repeat the above procedure until you reach ¢ = 0 and obtain

p(O)[0]C(A/N)[1] + {1 — p(0)[0]}C(1/N)][0]
1+ % '

C(0) =

Let us explore a situation which gives an easy-to-write formula. Our concern is the
dependence of the hedging probability on the up-to-date value of the setok at the beginning
of each period. We want to avoid this dependence by assigning a specific form of value-
interpretation function h. So let us consider

h(v) = av® (15)

where a and b are positive constants. Then, at each period and each state, we can use
the same hedging probability given by

db— (1+%)
P= (16)
By following Algorithm 1 described above, we have
. max{0, K — a(u/d"7Vp)"}

0(1)[]] - G,(Udeijb)b ’ (17)

N -1y .. C)lj+1+1—-p)C)ly
o (M=) - QU+ 11+ (= OO "

TN

(55 i= (4 3) b5 pe s 0ne () )

= (1+5) oW+ 2+ 2 - )W+ 1+ (1 -pPCl),  (19)

---, and finally

c0) = (1 + %)_N 5 <N> P(1-p)¥ o))

i=o \J

_ (1 + %f) - ivj (JD p(1—p)NI maX{O’aﬁ;iiszz;_j%)b} (20)

=0

Eqn. (20) can be easily proved by mathematical induction outlined above. Intuitively, the
following statements would be helpful.

N . :
e There are (]) paths between the start (f = 0) and each final state j at the maturity
(t=1).
e Every path must experience exactly N changes.

-1
e Each upward change makes the payoff be multiplied by p (1 + %f) .
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e Each downward change makes the payoff be multiplied by (1 — p) (1 + %f)_l.

e So the contribution of each path to the state j with the payoff C'(1)[j] is

(1+ %)‘N P (1= p)Nic(1)]]

Thus, although it seems an artificial example, we have obtained a simple closed-form
pricing formula. We would like to summarize it.

Theorem 3.2 (Option-Pricing Formula (Multiple-Period Model)) In the
binomial multiple-period model described in Fig. 3, let us consider a Furopean call option
defined by Definition 3.1 written on a setok which has the value-interpretation function
h(v) = av® (a,b : positive constants). We have Assumption 3.1 and Assumption 3.2 as
well as the following two assumptions:

1. The short rate of interest is a constant %f during each period of length 1/N.
2. The maturity is T,, = 1 (chosen as the time unit).

Let the price of the option now (t = 0) and the strike value of the option be C(0) and K,
respectively. Then, the following pricing formula holds.

o0 = (14 7) 55 (V) pra e sl )

Jj=0

where

If we further assume K > aVPd™, which is the condition for the option to have non-
zero probability for a positive payoff at the maturity, then the formula can be expressed in
a more (economically) instructive way:

where

K
, In (aVObdN >

ST ()

Although Theorem 3.2 mentions merely about the option price at ¢ = 0, Algorithm 1
gives us whole the price process at t € [0,1/N,2/N,--- 1]. It should be also noted that
the multiple-period pricing formula, Eqn. (20), holds even if the transition probabilities
(py for the upward change and 1—p, for the downward change) change period by period as
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far as both the probabilities are positive. Suppose that you are a great person: security’
minister of a large country. You are happy if the setok market is stable in terms of the
up-to-date values. The value-interpretation function is fixed as the form of Eqn. (15).
You have made best effort to achieve better stability. Your effort may contribute to

1. the reduction of the volatility factor of the value-interpretation function, z.e. a
and b,

2. the reduction of the volatility factor of the implicit value process, i.e. |u — d|, or

3. the adaptive control of the transition probability; for instance, p, > 1 — p, when
H (t) is lower than a certain desirable value Hy and p, < 1 — p, when H(t) > H,.

The first two may be detected and you could be proud of it if you watch the setok and the
option price processes, whereas the last one cannot. There can be an administrative
strategy which stabilizes the underlying setok with no influence on the option
price.

3.3 Pricing in a Continuous-Time Model
3.3.1 Model Description

The previous subsection 3.2 has investigated the models which are discrete both in time
and in values. What happens if we consider not discrete but somewhat continuous models?
Specifically, we are going to study the following model.

Assumption 3.4 (Continuous-Time Model) In Section 3, we are investigating setok
(S,Y;V,H,n,1) under Assumption 3.1, and the European call option on it. Let C(t) =
c(t, H(t)) be the price process of the option.

As a simple continuous-time model, we further assume the followings.

e The function c(t, h) is a C2-mapping.
e The dynamics of the (observable) up-to-date value process H is given by

dH = p(t, H(t))Hdt + o(t, H(t)) HAW

where p(t, H(t)) and o(t, H(t)) are adapted processes and W is a Wiener process
under the objective measure.

e Define G(t) = {H(t)} ! and corresponding occurrence as g = 1/h. We sometimes
regard ¢ as a function of t and g. To avoid confusion, we write é(t,g) = c(t,1/g),
where we assume the function ¢ is also a CH?-mapping.

"We use the word “security” with considering three notions at the same time: (1) Information security
such as confidentiality, authenticity, integrity, non-repudiation, and availability, (2) official pieces of
writing, e.g. bonds and stocks, and (3) what gives the owner the right to certain property.
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e The price process of the riskless asset is described by the dynamics
dB(t) = r;B(t)dt

where the short rate vy is a deterministic constant. This is a special case of Defini-
tion 3.3.

In general, the process H driven by the assumed dynamics
dH = pHdt + cHdW (21)

is said to be the geometric Brownian motion with drift if 4 and o are deterministic
constants. In this case, the absolute change in H over any finite time interval is log-
normally distributed. The geometric Brownian motion with drift appear in a lot of
random variables in the real society. We estimate p and o by using the observed market
data; they are exogenously given parameters.

In fact, Assumption 3.4 is mathematically quite similar to the well-known Black-
Scholes model[14] for pricing options on stocks. However, it is worth noting that Assump-
tion 3.1 says the setok is neither online nor offline divisible. In addition, we cannot go
short for it. These properties are different from those of stocks.

3.3.2 Pricing

We wish to derive a pricing formula for the European call option purchased at ¢ = 0 and
matured t = T,,, where T, is not necessarily equal to 1 but smaller than 7'. Firstly, let
us define an adapted process G(t) by

G(t) = g(t, H(t)), (22)
where .
g(t,h) = 1. (23)

By using Theorem 2.1 and Eqn. (23), the dynamics of this process is given by

1
dG = {gt + uHgp + §G2H2ghh} dt + o H gp,dW

_ pH 1 5 5 oH
- {O—FJF— H Hg}dt——dW
u o o?
— ([~ - - 24
( I + H) dt HdW (24)
where we denote partial derivatives by subscripts:
8g dg 0%g
= = —= = Qpp. 25
£ Gt oh = Gh, o2 Ghh (25)

In the rest of this paper, we may use this type of notation without clearly stating it as
far as the context is clear.
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Secondly, let us consider a portfolio composed of one setok and M options. The
portfolio is dynamically changed, over and over again. As in the discrete-time multiple-
period model, let us think of any infinitesimal time interval of length dt. Each dynamics is
given in the form of SDE. Let F' be the monetary value (in terms of the initial investment
at the beginning of the infinitesimal time interval) of this portfolio:

F=1+MC. (26)

We sell the setok for the value-proportional price and immediately buy one setok with
the up-to-date value for the fixed up-to-date price 1 at the end of the time interval.
By assumption, these procedures take no time and are allowed even in the case of the
infinitesimal time interval. Thus, over the time interval, the “resale and buy” brings

G+dG | _dG

27
G e (27)
and tells us that the dynamics of F' is given by

dF = % + MdC (28)

We have to be careful about the fact that stochastic differentials are the expected
value at the beginning of the time interval. So a more instructive notation for

Eqn. (28) would be

E4[dG]
G(t)

where E; denotes the expectation operator conditioned by the information available at

time ¢. We apply Theorem 2.1 for dC, and insert it as well as Eqn. (24) into Eqn. (28).

Then we obtain®

E[dF] = + M) E[dC), (29)

2
dF = {M (ct + puHep, + %H%hh) — u+02}dt+ (MoHcp, — o) dW
2
= {M (at — uGé, + 0*Géy + %G%M> —p+ 02} dt — o (MGé, + 1) dW (30)

Thanks to the divisibility of the option, by choosing

1
- 31
Gi (31)
we can make the portfolio risk-free, i.e. force the diffusion dIW-term to be zero. Note that
M can change over time. This is a dynamic replication of the risk-free asset.
Since any risk-free asset must have r; as the rate of return (recall Proposition 3.1),
we have

2
M (ét — pGeg + 0°Gey + %GQégg> —p+o®=rF. (32)

It should be noted that F' = F(t) on the right-hand side of Eqn. (32). Do not make a
mistake such as F' = F(t + dt). We are considering a rate of return.

81t is elementary to see that ¢, = —G?¢, and cpp = 2G3¢, + G*éy,.
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Finally, we insert Eqn. (31) and Eqn. (26) into Eqn. (32). The resultant relation must
hold for any occurrence of the adapted process GG. So let us use g instead of G' to obtain
the partial differential equation (PDE)

2
o A ~ ” ”
7g209g +711(gég—¢)+ ¢ =0. (33)

We solve this PDE under the boundary condition
(T, 9) = max{0, Kg — 1}, (34)

which says that the option price at the maturity must be equal to the payoff at that time®.
The following theorem gives the summary and the notational remark.

Theorem 3.3 (Boundary Value Problem for Option Pricing) Consider the Euro-
pean call option defined by Definition 3.1 written on the setok under Assumption 8.4. The
maturity of the option is T,, and the strike value is K. H(t) is the up-to-date value process
of the setok.

Then the only pricing function of the form C(t) = c(t, H(t)) consistent with the no-
arbitrage condition is obtained when c(t,h) = ¢(t,1/h) and é(t,g) is the solution of the
boundary value problem

2
g A A A A
392099 +74(9ég—¢) + ¢ =0

(T, g) = max{0, Kg — 1}

in the domain [0,T,,] X R..

In general, it is difficult to obtain an analytical closed-form solution for the boundary
value problem in Theorem 3.3. However, we do not have to be disappointed. We can use
numerical approach to obtain approximate solutions. The form of the PDE considered is
not really strange.

We have to mention an extremely simple case: if ;4 and ¢ are deterministic constants,
a closed-form solution is easily obtained. The result is as follows.

Theorem 3.4 (Option-Pricing Formula (Continuous-Time Model)) Let the up-
to-date value process follow the geometric Brownian motion with drift, i.e. u and o be
deterministic constants. Then Theorem 3.3 yields the pricing formula C(t) = ¢(t, H(t)),
where

olt, ) = 5N [dy (1, 1)] = exp {=r(T = 1)} N [d(, 1)

where N is the cumulative distribution function for the standard normal distribution, i.e.

N[d] = \/L?_ﬁ /doo exp (—%) dz

9This must hold for any state at the maturity.

30



and

dy(t,h) = ﬁ {m (%) + (rf + %2> (T — t)},

dg(t, h) = dl(t, h) - U\/Tm —t.

Let us see on which parameters the option price in Theorem 3.4 depends. It depends
on the diffusion o, the maturity date 7T,,,, the short rate r;, the up-to-date value h, and of
course the strike value K. By contrast, it does not depend on the drift ;1 and the length
of the tradability period 7.

3.3.3 Analysis of the Option-Pricing Formula

In order to investigate the characteristics of the option-pricing formula, we plot the current
option price C'(0) given by Theorem 3.4 with changing the up-to-date value H(0) €
(80, 120]. We denote C(0) by C, in the following. We choose one year as the time unit.
We interpret the short rate r into the intuitive (yearly) rate r of interest for the bank
account by

r=exp(ry) — 1 (35)

and we use percentage representation when we refer to r.
The basic parameter assignments are as follows.

Maturity: T,, =1 [year]
Volatility: ¢ =0.2
Exercise Value: K =100
Short Rate: r = 0.5 [%]

We will show four figures. Since smaller up-to-date values mean the option holders
are in better positions now, the curves are monotone decreasing in each figure.

Firstly, we investigate the effect of the maturity. The plots for 7,, = 0.5, 1, and 2
are given in Fig. 4. If the maturity is further away from now, things would become more
uncertain. The uncertainty relaxes both chance and risk; curves for larger 7, are less
changing. Roughly speaking, larger T,, bring lower option prices for H(0) < K = 100;
the currently better position of the option holder is less evident under larger uncertainty.
Also roughly speaking, larger T, bring higher option prices for H(0) > K = 100; the
currently worse position of the option holder is also less evident under larger uncertainty.

Secondly, we investigate the effect of the volatility o. The plots for ¢ = 0.1, 0.2, and
0.4 are given in Fig. 5. If the volatility is larger, things would become more uncertain.
Therefore, the effect is quite similar to that of the maturity; the uncertainty relaxes both
chance and risk, and curves for larger o are less changing.
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Vol atility=0.2, K=100, r=0.5

Fromthe nost changing to the | east:
Trme0. 5, TnEl, Tne2

Option Price

80 90 100 110 120
Up- To- Dat e Val ue

Figure 4: European call option price against up-to-date values of the setok whose price
is fixed to be 1. The curves for the maturities 7,,, = 0.5, 1, and 2 are shown. Further
maturities bring less changing curves by relaxing chances (for smaller up-to-date values)
and risks (for larger up-to-date values).

TnFl, K=100, r=0.5

From the nost changing to the | east:
Vol atility = 0.1, 0.2, 0.4

Option Price

80 90 100 110 120
Up- To- Dat e Val ue

Figure 5: European call option price against up-to-date values of the setok whose price
is fixed to be 1. The curves for the volatilities ¢ = 0.1, 0.2, and 0.4 are shown. Larger
volatilities bring less changing curves by relaxing chances (for smaller up-to-date values)
and risks (for larger up-to-date values).
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Tm=1l, Volatility=0.2, r=0.5

From |l eft-down to right-up:
K=80, K=100, K=120

Option Price

80 90 100 110 120
Up- To- Dat e Val ue

Figure 6: European call option price against up-to-date values of the setok whose price
is fixed to be 1. The curves for the exercise values K = 80, 100, and 120 are shown.
Higher exercise values mean currently better positions of the option holders, and hence

bring higher option prices.

Vol atility=0.2, K=100, Tnel

From | eft-down to right-up:
r=0.01, r=0.5, r=1 (simlar) |
r=10

Option Price

80 90 100 110 120
Up- To- Dat e Val ue

Figure 7: European call option price against up-to-date values of the setok whose price
is fixed to be 1. The curves for the (yearly) short rates of interest » = 0.01, 0.5, 1.0 and
10.0 [%] are shown. Higher short rates make investments more profitable and give higher

option prices.
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Thirdly, we investigate the effect of the exercise value K. The plots for K = 80, 100,
and 120 are given in Fig. 6. It is obvious that larger exercise values mean currently better
positions of the option holder. Figure 6 represents this feature; larger exercise values
bring higher option prices. It should be noted that the option price almost equals to the
fixed setok price, i.e. C ~ 1 = Y (t), when the current position of the holder is neutral
(i.e. when H(0) ~ K).

Finally, we investigate the effect of the short rate. The plots for » = 0.01, 0.5, 1, and 10
[%] are given in Fig. 7. In general, higher short rates make investments more profitable!.
Figure 7 represents this feature; larger short rates bring higher option prices. However,
realistic short rates show little difference. Only the unrealistically high rate (r = 10%)
dominates evidently.

4 Compromise and Revocation

4.1 Observation and Implication

Suppose again that you are a great person: security minister. The setok world of your
concern works mostly well but there are possibility of revocation: implicit values are some-
times compromised, and the compromise can cause a sudden and significant reduction in
the corresponding up-to-date values and price. Depending on the contents, this reduction
can be viewed as a revocation. You want to watch how often such a disaster is likely to
happen. What can you do for that?

Of course, you can watch the market because an important person like you has re-
sources as good as the object providers’ and servers’. You can analyse the statistics. If
the revocation frequency so far is not really high, you are probably happy. But you may
still concern about the setoks which have never experienced revocation. You want to
know the public opinion or public fear, in particular. You may distribute a questionnaire
which includes a question: “How often do you think the setok (S,Y;V, H,n,m) is likely
to have revocation in value? Please specify it in percentage.” This may cost a lot and
the result may be too subjective. It takes time, too. The purpose of this section is to
make an attempt to obtain less subjective opinion by observing the setok/option market:
we expect that some parameters related with the compromise are implied by the market
data including the option price. Thus we wish to have an option-pricing theory under a
risk of compromise.

4.2 Extended Settings

The rest of this section will study a continuous-time model. As for the underlying setok,
we will mostly follow Assumption 3.1. The difference is in its tradability: the tradability
is assumed to be not strict here. Although the setok is T-tradable, T is stochastic. Let
H(0) > 0 and T(0) = Ty > 0. As long as the up-to-date value H(t) is positive, T keeps
the initial value Tj. However, in the case of revocation, the tradability is ruined; 7'(t) = 0

10Recall that the risk-free portfolio composed of the setok and the options has the same rate of return
as the short rate.
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for any ¢ such that H(¢) = 0. But the holders of the setok do not have to be completely
discouraged. In place of the tradability, a refundability arises. We specify this formally.

Assumption 4.1 (Setok with Revocation) In Section 4, a single-valued setok (S, Y;
V', H, n, 1) with the following properties is studied.

1. The price-interpretation process is an identity process, i.e. Y (t) =1 for all t.
The setok is not online divisible.
The setok is not offline divisible

No one can go short for the setok.

The setok is T-tradable and the length of the tradable period is given by T =
7r(t, H(t)), where the function 77(t,h) : Ry X Ry — {0,Ty} is as follows.

Ty it h>0
rr{hh) = { 0 if ho.

Ty > 0 s a deterministic constant.

6. The setok is T-refundable and the length of the refundable period is given by T =
Tr(t, H(t)), where the function Tg(t,h) : Ry x R, — {0,T1} is as follows.

0 ith>0
(b, h) = { T it h=0.

T1 > 0 is a deterministic constant.

7. The possession of the setok has no meaning as a project and hence, in a financial
term, yields no dividends.

8. As long as no compromise has occurred, all the up-to-date and implicit value pro-
cesses are positive and finite.

9. Compromise-responsive in value.

The first property Y (¢) = 1 in Assumption 4.1 implies that the setok is not compromise-
responsive in price.

According to Assumption 4.1, we change the assumption on the maturity 7,, of the
option. In particular, we assume

T, < min{Ty, T} }. (36)

We are interested in the price process of the European call option. The difference
from Section 3 is in the assumption on the underlying setok dynamics. In addition to a
drift term and a diffusion term, the setok has a jump term which describes the effect of a
compromise. Let us suppose that the compromise happens according to a Poisson process
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with intensity A\. Once the Poisson jump occurs, the up-to-date value is revoked to be
zero because of 9. in Assumption 4.1. Thus, instead of Assumption 3.4, we consider the
model below.

Assumption 4.2 (Continuous-Time Model with Revocation) In Section 4, we are
investigating setok (S,Y;V,H,n,1) under Assumption 4.1, and the European call option
on it. Let C(t) = c(t, H(t)) be the price process of the option.

As an extended continuous-time model, we assume the followings.

o The function c(t, h) is a C**-mapping in the domain R, x R, ., and c(t,0) = 0 for
allt € R.. R, is the set of positive real numbers.

e The dynamics of the up-to-date value process H is given by

dH = (1 — (¢, H(t))dt) {p(t, Ht))Hdt + o (t, H(t)) HdW} + (¢, H(t))dt - (—H)

where p(t, H(t)) and o(t, H(t)) are adapted processes and W is a Wiener process
(under the objective measure). An adapted process A(t, H(t)) represents the intensity
of the Poisson process. We regard the described revocation risk as a systematic risk
(see 5.2).

e Define G(t) = {H(t)}~* and corresponding occurrence as g = 1/h. We sometimes
look at ¢ as a function of t and g. To avoid confusion, we write é(t, g) = c(t,1/g),
where we assume the function ¢ is also a CY*-mapping for 0 < g < oo.

e The price process of the riskless asset is described by the dynamics
dB(t) = ryB(t)dt

where the short rate ry is a deterministic constant.

4.3 Pricing

First, by using the multiplication table in Theorem 2.1, we notice that the dynamics of
H is given by
dH = (p— A\)Hdt + o HdW. (37)

As usual, let us consider a riskless portfolio composed of one share of the setok and M
options. Let F' be the monetary value (in terms of the initial investment at the beginning
of the infinitesimal time interval) of this portfolio. As long as no revocation happens, the
dynamic strategy tells us to pay

F=14+MC (38)

at the beginning of the infinitesimal time interval. After a revocation, we do not need to
price. We want to see dF'. Unfortunately, the revocation will not allow ¢ to remain finite;
g — +00 as h — +0. Therefore, without writing dG like Eqn. (24), we here consider
the meaning of Eqn. (28) or equivalently and more instructively Eqn. (29). What we
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are going to do is to write the expected gain conditioned by the information available
at the beginning of the infinitesimal time interval. The refundability resulting from the
revocation implies that the holder of the setok sells it for the fixed up-to-date price
Y (t) = 1. So the contribution from one share of the setok to dF is

(1= Adt) {=(u— 0*)dt — gdW } + Adt - 1 = (A — p + 0*)dt — cdW. (39)

As for the option,

2
MdC = M(1 — Adt) { (et — G, + 02Ge, + %G%gg> dt — aGégdW}
+MAdt - (—c)
2
=M (ét — uGéy + 0°Gey + %GQégg - Ac) dt — MoGéydW. (40)

The investigation above results in

2
dF = {M (ét — pGey + 0*Gey + %G%gg - Ac) +A—pu+ 02} dt
—0 (MGé, + 1) dW. (41)

Thanks to the divisibility of the option, by choosing

M=——— 42
Ge,’ (42)

we can make the portfolio risk-free. As usual, M can change over time.
Due to the no-arbitrage requirement, we have

2
M (ét — uGéy + 0°Géy + %Gﬂégg — )\c) +A—pu+o? = rpF(t)
= ’I‘f(l-i‘MC). (43)

Next, we insert Eqn. (42) into Eqn. (43). The resultant relation must hold for any
occurrence of the adapted process G as long as no compromise has occurred. So let us
use g instead of G' to obtain the following PDE

0.2

7g?égﬁ(rf —A)gé, — (ry+N)é+é = 0. (44)
We solve this PDE under the boundary condition
(T, 9) =max{0,Kg—1} (0< g < 00). (45)

The following theorem gives the summary and remarks.
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Theorem 4.1 (Boundary Value Problem under a Revocation Risk) Let us have
Assumption 4.1 for the setok. Consider the European call option defined by Definition 3.1
written on the setok under Assumption 4.2. The maturity of the option is T,, and the
strike value is K. H(t) is the up-to-date value process of the setok.

Then the only pricing function of the form C(t) = c(t, H(t)) consistent with the no-
arbitrage condition is obtained when

_ ] ¢é(t,1/h) for h >0
C(t’h)_{ 0 forh=0

and ¢(t, g) is the solution of the boundary value problem

2
o* 5. . L
59 Cgg+ (ry = N)glg — (ry + N)é+ 6 = 0.

(T, g) = max{0, Kg — 1}

in the domain [0,T,,] X R, .

In general, it is difficult to obtain an analytical closed-form solution for the boundary
value problem in Theorem 4.1. However, we do not have to be disappointed. We can use
numerical approach to obtain approximate solutions. The form of the PDE considered is
not really strange.

4.4 Inverse Estimation

Return back to the role of security minister.

Let us see on which parameters the option price obtained from Theorem 4.1 would
depend. It does not depend on the drift yu, and the parameters regarding tradabil-
ity /refundability periods, i.e. Ty and T3. By contrast, it would depend on the diffusion o,
the maturity date T, the short rate r¢, the up-to-date value h, and of course the strike
value K. In addition, it would depend on A: the risk of compromise. This suggests that
the market data may give you some information on a public opinion about the risk of
compromise which has not yet occurred. You want to estimate A by using the market
data observed. This is an inverse problem.

Consider the following procedure for the inverse estimation:

(Procedure 1)

1. By using recent market data excluding option prices, estimate the short rate r; and
the volatility o of the up-to-date value.

2. Guess the risk of compromise .
3. Solve the boundary value problem in Theorem 4.1.

4. Compare the result with recent option price data. If there are a lot of options (on
the same setok) with different maturities and/or different exercise values, use them
as well. Compute the error of guess, e.g. in the least-square’s sense. Some weighting
may be helpful.
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5. If the error is small enough, quit.

6. If you do not satisfied with the error, change the guess and repeat. Typically, if the
computed prices are too high, increase the guess. This is an intuitive observation
from the fact that a revocation makes the option worthless. Once compromised,
one cannot expect any yield from exercising the option and immediately selling
(refunding) the setok; that would be just a waste of time.

The boundary value problem may take time to be solved. Procedure 1 in total may
be too heavy. But you may be more confident and feel more speedy than in the case of
questionnaire.

What you want to do may be just to see whether \ exceeds a certain value, say, .
The intuitive observation tells us that the option price would be lower for larger A. There
is a possibility that the following more practical procedure without repeat will work well.
(Procedure 2)

1. By using recent market data excluding option prices, estimate the short rate r; and
the volatility o of the up-to-date value.

2. Set A = ).
3. Solve the boundary value problem in Theorem 4.1.

4. Compare the result with the current option price data. If there are a lot of options
(on the same setok) with different maturities and/or different exercise values, use
them as well.

5. By using a tool for statistical test, examine whether you can say the computed prices
are higher than the observed prices with non-negligible probability.

6. If the answer is Yes, think of it as an alarm. It might be time for you to demonstrate
your administrative talent as a minister.

4.5 Effect of Derivatives

This framework is virtual in a sense that there has not been established such a setok
world. If we really want to have an option market on the setoks, we must be careful
about the possible change caused by the introduction of derivatives. Even in the existing
finance, the effects of derivatives are on-going theoretical and empirical research topics.
There are different opinions.

There is a common public and regulatory perception that derivative securities may
increase volatility and can have a destabilizing effect on the underlying market. Basically,
they are afraid that poorly informed speculators could have a destabilizing effect. Aca-
demic reports on this side are few. A theoretical example is [23] and an empirical example
is [24].

Among academic people, however, the opposite opinion has been dominating so far:
if derivatives promote information dissemination and collection, introduction of them
would reduce volatility. The majority of studies have been in this direction. Examples
of theoretical approaches include [25]-[28]. Empirical supports include [29]-[32]. There
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are also empirical studies which show volatility decreases when the derivatives get more
popular in trading quantity [33], [34]. If this is the case for setoks as well, we are happy
to introduce derivatives.

5 Related Work

5.1 Foreign Derivatives and International Issues

The setok market may seem similar to the foreign exchange market; when we consider
tradable single-valued setoks in particular, the ratio of the price to the value can have
similar properties to those of foreign exchange rates. The theories of currency and foreign
derivatives [35], [36] use different short rates in different countries, which is the major
issue of the theory. Foreign currencies are regarded as tradable and divisible assets. This
assumption makes the theory easier.

By contrast, our setok framework has been domestic so far; the key point is not in
how to deal with the sort rate(s) but in how to model the tradability, refundability, and
divisibility. Of course, international settings would be very interesting future work. If
we assumed that several different virtual currencies are available over the network, the
resultant theory would be more interesting: virtually international economy.

As for international issues, there are empirical studies which show that there are
common features as well as different features in derivative statistics and questionnaire
results among different countries [37]. Common features include

e Major participants in the option market are large firms.

e The highest motivation comes from hedging purposes rather than from speculating
and arbitrage.

e The hedging activities are mainly aimed at hedging anticipated transactions within
a year.

Different features include

e The highest concern is in the lack of information in some countries, but volatilities
in others.

e How popular derivatives are.
e How popular currency derivatives are.

The study of the derivative effect in the setok framework would, if it starts, have to
consider differences over countries and regions. Note that even regarding conventional
financial derivatives, recently mandated disclosures have just enabled us to obtain a large
number of samples to investigate firms’ usage of derivatives [38].
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5.2 Jump Processes

In the continuous-time model, we derived the PDEs for option pricing based on the no-
arbitrage requirement:

e Any risk-free asset must have r as the rate of return (recall Proposition 3.1).

As far as Section 3, there is nothing to be appended here. However, the model with revo-
cation in Section 4 needs more words here. In particular, about an assumption which is
implied by Eqn. (43); in financial words, Eqn. (43) implicitly assumes that the revocation
is a systematic risk. We mentioned it in Assumption 4.2 but have placed no discussion
on it so far.

A related issue is found in the option-pricing theory which allows the underlying stock
to have jumps in its price process [16], [18], [39], [40] }*. They resorted to the conventional
CAPM (Capital Asset Pricing Model) [42] by assuming that jump processes describe
nonsystematic or idiosyncratic risks, which implies that risks such as firms’ defaults have
a too wide variety of backgrounds with no good reason to be pre-distributed to appear in
a global risk premium. This is an extreme assumption and there are a lot of arguments
about the systematic/nonsystematic jump processes [43]-[46]. In fact, jumps observed
in stock prices are reported to be systematic across the market portfolio [47], and this
phenomenon is more significant in the foreign exchange market than in the stock market
[48]. The feature of the foreign exchange and currency option markets can be partly
understood by the effect of news arrival [49], [50] and changes in monetary policies [51].
The mixture of idiosyncratic and systematic jumps are studied in [52], [53]. The empirical
study on the jump-diffusion process of interest rates has not matured due to the difficulty
of likelihood estimation [54], [55]. There are a lot of arguments about CAPM as well
[56]-[58] 2.

We have used Eqn. (43), which is based on the systematic case. Heuristically speaking,
the more similarly'® network people or entities look at the revocation risk, the better model
our choice of Eqn. (43) would give. In other words, we hope that related information is
distributed more fairly with less hesitation, and revocation risks shall be more open than
conventional default risks. This is also an assumption, and we could have neither empirical
supports nor objections at present; the setok world has not been established yet. What
we can say now is based on a technological insight: our choice could go well with the
recent trend in the public-key infrastructure toward a single-directory system [59], [60].

6 Concluding Remarks

Toward financial risk management in an open network, we have made an abstraction
of uncertain digital objects and defined the security token, which is abbreviated into a
word coinage setok. Each setok has its price, values, and timestamp on it as well as the

1Tn early days, a study using a sample of NYSE listed common stocks reported that jumps in common
stock returns leads relatively small deviations from the Black-Scholes formula [41], which suggests that
the bias-elimination by [40] may be insignificant.

12These are nothing but examples; there are really a vast number of studies on utility functions and
the CAPM.

B3Microscopically, this corresponds to a strong positive correlation.
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main contents. The model fits a hierarchical entity structure caused by network security
requirements.

A number of properties of the setok were defined. They include value response to
compromise, price response to compromise, refundability, tradability, online divisibility,
and offline divisibility. Some of them were really used in the subsequent studies on setok
derivatives, whereas the others were not. This is an on-going framework.

The derivative investigated is a simple European call option written on the up-to-date
value of a setok. In continuous-time as well as discrete-time models, we have derived
several option-pricing formulae. These formulae do not require any divisibility of the
underlying setok. The basic features of the option price were examined numerically. An
intuitive interpretation of the results was given as well.

In search of applications, an inverse estimation of the compromise probability was
studied. The result suggests that we may be able to estimate the public opinion about the
probability. We say public opinion because our financial approach is valid for the economic
equilibrium. This opinion is expected to be less subjective than a naive questionnaire.
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