Further Results on MSFE Encompassing*

Massimiliano Marcellino
[.G.I.LE.R., Universita Bocconi
and
European University Institute

This Version: October 1998

Abstract

We show that the standard condition for MSFE encompassing is no longer
valid when the forecasts to be compared are biased. We propose a simple
modification of such a condition and of tests for its validity. The relationship
between these tests, pooling regressions and tests for non-nested hypotheses
is also analysed, together with their multivariate versions. The theoreti-
cal results are illustrated by an empirical example on inflation and deficit
forecasts, key variables for the formulation of monetary and fiscal policy.
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1. Introduction

Several different forecasts of the same phenomenon are often available. The usual
approach in this case is either to choose one of them on the basis of a certain
criterion, such as minimum mean squared forecast error (MSFE) or mean absolute
error (MAE), or to combine them in a pooled forecast, again with the aim of
minimizing a certain loss function, see e.g. Clemen (1989).

An alternative approach is based on the so-called encompassing principle, see
e.g. Mizon (1984), which was originally developed for in-sample model compari-
son, and later on extended to forecast comparison, starting with the seminal paper
by Chong and Hendry (1986). Forecast encompassing requires one model to be
able to correctly predict the forecasts of the competing models, i.e. the models
that produce the alternative forecasts, or at least their implied MSFEs. In this
case the competing models become redundant, and all the relevant information
is contained in the encompassing model.

The evaluation of forecast encompassing requires knowledge of the forecasting
models, or at least of the relationship among the competing forecasts, while for
MSFE encompassing only the forecasts and the realizations are necessary. The
larger information set is often not available when comparing, for example, fore-
casts from international organizations such as the IMF or the OECD, or forecasts
from econometric models with consensus forecasts. These econometric models,
even if available, can also be so complex that standard techniques for forecast
encompassing, e.g., Ericsson (1992), become hardly applicable. Therefore, in
this paper we will mainly focus on MSFE encompassing. When the forecasting
models are available, the analysis of MSFE encompassing is anyway interesting,
because this property is a necessary condition for the validity of stronger notions
of forecast encompassing.

MSFE encompassing tests, namely tests for checking whether one model can
correctly predict the MSFE arising from a competing model, were originally pro-
posed by Chong and Hendry (1986), as mentioned, and were further analysed and
extended by Lu and Mizon (1991), Ericsson (1992), Ericsson and Marquez (1993).
They were applied, among others, by Andrews et al. (1996) for the comparison
of unemployment, growth and inflation forecasts by three UK macroeconomet-
ric modelling groups, and by Artis and Marcellino (1998b) for IMF, EC, and
OECD deficit forecasts. In this paper we review the available results on MSFE



encompassing tests, and extend them.

In Section 2 we start by defining formally the condition for MSFE encom-
passing. We then show that such a condition is no longer valid when the fore-
casts under comparison are biased, and modify it properly. In this case, also
the standard relationship between MSFE encompassing and MSFE dominance
(the former implies the latter) no longer necessarily holds, as it is derived the-
oretically and illustrated with an example. We think that this is an important
extension because forecast unbiasedness is often rejected in practice, which can
be also justified theoretically if the loss function of the forecaster is asymmetric
(e.g., Granger and Newbold (1986, Ch. 4)), if other goals rather than accuracy
are important, e.g. publicity (Laster et al. (1997)), or if there are unaccounted
structural changes over the forecast period (e.g. Clements and Hendry(1997c)).

In Section 3 we review standard MSFE encompassing tests, and indicate how
they should be modified in the presence of biased forecasts. Next, we recall the
role of pooling regressions for MSFE encompassing, and compare the relative
merits of alternative specifications. Then, we show how a MSFE encompassing
test can be derived as a Cox (1961) statistic, by exploiting the theory developed
in Pesaran (1974).

In Section 4 several multivariate versions of the tests are described and com-
pared, vielding a general framework for jointly testing for encompassing, unbi-
asedness, and efficiency.

In Section 5 we present an empirical example, in order to illustrate some of the
theoretical results. We compare the IMF inflation and deficit forecasts for the G7
countries with random walk based forecasts. Notwithstanding their simplicity,
the latter can be rather robust in the presence of structural changes (Clements
and Hendry (1997b)), which are likely in the case of the deficit. Actually, for this
variable the naive forecasts perform quite well, they even MSFE encompass the
IMF forecasts for Japan.

Section 6 summarises and concludes.

2. MSFE Encompassing

In this section we define the notion of MSFE encompassing, and show how the
conditions for its validity have to be modified when the forecasts under comparison
are biased. We also analyze the relationship between MSFE dominance and



encompassing, showing that it is also affected by biasedness of the forecasts.

We assume that only two univariate forecasting models are available, M!
and M?, their parameters are known and constant over the forecast period, the
variable to be forecast, y, is stationary, and the forecast horizon is one period.
These hypotheses are useful for focusing on the main topics, they will be relaxed
later on. The forecasts for period t made at time t — 1 by M! and M? are labelled
gt and g2, witht =T +1,T+2,....T + N.

For the reasons exposed in the Introduction, we will not require 7} and 7? to
be unbiased, namely,

M'=  y=a+by +uy, uy~iid(0,01,), cov(uy,y?;)=0 i>0,
M? = gy, =c+dg? +uy, uy ~iid(0,09,), cov(uy,jr ;)=0 i>0.
(2.1)
Unbiasedness requires no constant and a unit coefficient on the forecast, (a =
0,b = 1) and/or (¢ = 0,d = 1). Under unbiasedness w;; coincides with the
forecast error ey = y; — i, i = 1,2; otherwise they will be different. Notice also
that each equation in (2.1) is a statement about the expectation of y conditional
on 7 and g7, so that each model’s proprietor assumes that the competing forecast
is redundant.

From the decomposition
ye— 90 = e —90) + @ — 90, (2.2)
it follows that
MSFE* = MSFE' + E(5; —5)* +2E[(y: —91) W —97))-  (2:3)
The prediction of M! for MSFE? MSFFE?, is
,, 2 _ 1 A1 =282 A1yl 22
MSFE{ = MSFE" + E(y; —9;)” + 2E[(a+ (b — Dy (¥ — ¥7)]- (2.4)

M! encompasses M? with respect to the MSFE if and only if MSFE? = MSFE?.
If 3 is unbiased, the last term in the right hand side of (2.4) is equal to zero, and
MSFE encompassing requires lack of correlation between the forecast error from
one model and the difference of the two forecasts, i.e.,

El(y = 9:) @i —9)] = 0. (2.5)



If unbiasedness does not hold, it is still possible to have MSFE encompassing but
the condition becomes

El(ye = 5) @ =59 = Bl(a+ (b~ Dg) (5 — i),

that can be rewritten as
Eluyn(g} — 77)] =0, (2.6)

namely, the error u1; (no longer the forecast error 4 — #;) must be uncorrelated
with the difference of the forecasts.
Four outcomes are possible in a MSFE encompassing evaluation:

1. M' MSFE encompasses M?2.
2. M2 MSFE encompasses M!.
3. Neither 1 nor 2 hold.

4. Both 1 and 2 hold.

Cases 1 and 2 pose no problems. Case 3 indicates that both models are somewhat
misspecified, and should be reformulated. This issue is further discussed later
on in the context of pooling regressions. In case 4, M! and M? are said to
be observationally equivalent with respect to the MSFE (see Mizon and Richard
(1986)). It can be easily shown that when the forecasts are unbiased this happens
if

Blgi @i — )] = Elg @ — 4], (2.7)
i.e., the covariance of the two competing forecasts with the forecast difference is
the same. It is quite unlikely that (2.7) holds in the population, but in finite
samples the two covariances can be very close. If this is the case, the two models
should be compared on the basis of other criteria, such as the mean absolute
forecast error.

It is now worth analysing the relationship between MSFE dominance of M!
(MSFE! < MSFE?) and MSFE encompassing. When 7} is unbiased, MSFE
dominance is only a necessary condition for MSFE encompassing, and selecting a
model according to this criterion does not ensure that the resulting forecast errors
cannot be explained by the alternative forecasts. Instead, MSFE encompassing



is a sufficient condition for MSFE dominance. Both propositions can be easily
derived from a comparison of (2.3) and (2.4), see e.g. Ericsson (1992).

When @} is biased, MSFE dominance is no longer necessary for MSFE en-
compassing, and the latter is not sufficient for the former. Actually, from (2.4),
it can be MSFE? = MSFE?, i.e. M! MSFE encompasses M2, but

B —4i)* +2B[(a+ (b - 1))@ — 5] <0,

which implies MSFE? < MSFE?.
As an example, let us supplement (2.1) with a description of the relationship
between the two forecasts,

th =a+ ﬁz//\tl N, M ZZd(Ov JT])? (28)
with cov(uye, ) = 0. Tt is
Elly —5) —91)] = Ella+ (0 —1)7,)(5 —57)],

so that MSFE? = MSFE? and M! MSFE encompasses M2.! Notice that
using the condition (2.5) to verify encompassing, we would reject it because it is
El(ye = 91)(@i — 97)] # 0. Then we have,

MSFE? - MSFE' = E(j —5;)* +2E[(a+(b- 175 - 7)) =
= E[1-08)g —a—m*+2BE[(a+ (b-1)gH (1 - By —a—n)] =
= E@)*1-p)(2b—1-p)+2E®)a(l - §) —ab - 5)] +
+a? + oy — 2ac.

This quantity can be larger or smaller than zero, e.g., it is MSFE? < MSFFE!
for2b—1<p <1, a=a(l—-p3)/(b-0), oy <a(2a— ).

To conclude, it can be worth stressing that MSFE encompassing provides a
measure of the relative performance of a model, not of its overall goodness in
forecasting, so that the latter should be separately assessed.

nstead, E[(y: — 97)(U; — 9t)] # El(c + (d — 1)37)(y7 — 9i)], so that M? does not MSFE
encompass M'.



3. Univariate MSFE encompassing tests

In this section we review existing tests for MSFE encompassing, and suggest how
they should be modified to take forecast biasedness into account. We then relate
them to pooling regressions, and evaluate whether biasedness poses additional
problems also in this framework. Next, we show how classical tests for non-
nested hypotheses can be adapted to test for MSFE encompassing. Finally, we
indicate how some of the simplifying assumptions that we maintain for clarity
can be relaxed.

3.1. MISFE encompassing tests

One of the earliest attempts to provide a statistical tool for choosing a forecasting
formula, Hoel (1947), is based on the significance of the regressor in the model

ye =G = 0@ —Gp) + e, up~id(0,00). (3.1)

The underlying idea is that when ¢ = 0 the forecast error from M! cannot be
explained by M?, which is therefore redundant. From (2.5), a test for ¢ = 0 is
also a MSFE encompassing test, as noticed by Ericsson (1992) and Clements and
Hendry (1993). Yet, from (2.6), this statement is correct only if 7} is unbiased, i.e.,
a=0,b=1in (2.1). When this hypothesis does not hold, in order to construct
a MSFE encompassing test based on the hypothesis ¢ = 0, the regression should
be modified into

U = o — ) +ue, g ~id.d(0,00), (3.2)

where 2y, is the estimated counterpart of uq;. This regression is sometimes run
in empirical analysis, see e.g. Artis (1988), and the discussion in the previous
section provides a theoretical rationale for it.

Chong and Hendry (1986) instead considered an equation similar to (3.1),
namely,

Yo — U = EY7 +w, (3.3)

and proposed to test for £ = 0 for MSFE encompassing. They showed that the
t-statistic for £ = 0 has a N(0,1) distribution for large T and N. This is also the
suggestion by Ericsson (1992) in the case of stationary variables. Yet, again, this



is a MSFE encompassing test only if 4} is unbiased. Otherwise, the dependent
variable should be substituted by 1.

Continuing the example in the previous section, when the forecasts are biased,
even under MSFE encompassing of M! for M? both the OLS estimator of ¢ in (3.1)
and that of £ in (3.3) converge to non zero values, because E[(y; — 7} ) (7} —5?)] and
E[(y:—1;)y?] are different from zero. Instead, using @1+ as the dependent variable
in either (3.1) or (3.3), the OLS estimator of the coeflicient of the regressor
converges to zero, correctly indicating that M! MSFE encompasses M2,

3.2. Pooling regressions

Some of the aforementioned drawbacks of standard MSFE encompassing tests
can be also avoided by adopting the model

ye = e+ fU} +gii + e, (3.4)

which nests both equations in (2.1). Equation (3.4) has been often employed in
the literature on forecast pooling, see, e.g., Clemen (1989) and Wallis (1989), be-
cause the estimates of the parameters provide the optimal weights in the sense of
minimising the MSFE for the pooled forecast. The hypothesis g = 0 corresponds
to M! encompasses M? with respect to MSFE. When e = 0, f = 1 the forecasts
from M! are also unbiased. This restriction leads to (3.3), whilee =0, f+g=1
(which holds when at least one forecast is unbiased) leads to (3.1). It can be
easily verified that in the case of the example in the previous section the OLS
estimators of e, f, and g converge, respectively, to a, b, and zero.

The benefits from not imposing f 4+ g = 1 are emphasised by Fair and Shiller
(1990). However, they use a different version of (3.4), namely,

Yo — 1= c+ &G — 1) + 07 — ye-1) + e (3.5)

Paradoxically, when £ + 7 # 1 this formulation appears to be inappropriate (be-
cause of non cancellation of the y;_; terms), and can lead to biased estimators of
¢ and 7. Let us consider an example just by Fair and Shiller (p.377). They as-
sume, in our notation, that y is generated as the sum of two orthogonal variables
plus noise and that each of M! and M? lets i depend on one of the two variables
only. Hence, we should have e = 0 and f = g = 1 in equation (3.4). However,
the estimators of £ and 7 in (3.5) cannot both converge to one, otherwise there



would be —y; 1 on the left hand side of (3.5) and —2y, 1 on the right hand side.
Hence, the formulation in (3.4) seems still preferable.

Equation (3.4) is also advantageous when many models have to be compared,
say n, because one regression instead of n type-(3.3) regressions is sufficient.
Yet, the probable high correlation among the regressors can create problems of
collinearity. In such a case a change of regressors as in

y=e+(f+9)0 +9@ —9) +w (3.6)

might be required.?

The encompassing-unbiasedness hypotheses have also strong implications in
terms of MSFE dominance. In particular, (e = 0, f = 1, g = 0) implies that
M! MSFE dominates M¢, where M? is whatever model whose forecasts can be
expressed as a linear combination of those by M! and M2. Granger and Newbold
(1973) have suggested that a forecasting model should have conditional efficiency
equal to one, where conditional efficiency is defined as the ratio of the sampling
variances of the forecast errors of the pooled and original models. This require-
ment is therefore satisfied when (e = 0, f = 1, g = 0). This hypothesis also
implies the equality to zero of the first two terms in the Theil (1958) decomposi-
tion )

MSFE =(§ —¥Y)+(S; —r8y)° + (1 —1%)5,
1
where i and Yy are the sample means of predictor and predicted series, S@\l and
Sy are their standard deviations, and r is the sample correlation between them.

To conclude, it can be worth commenting briefly on the role of forecast pool-
ing and model rispecification when both regressors are significant in (3.4) or
(3.6), see Chong and Hendry (1986), Diebold (1989), Ericsson (1992) for further
discussion. The first option is current practice in applied forecasting, but this
outcome is in general related to a misspecification of both models, which should
therefore be changed somehow before forecasting. However, when M! and M?
are large macroeconometric models it seems difficult to modify them quickly, so
that forecast pooling can be a second best. Moreover, in certain cases, see e.g.

2An alternative approach is to extract the common infornation in the n competing forecasts
using principal component techniques, and use it as a forecast. See Chang et al. (1998) for
details.



the aforementioned example by Fair and Shiller (1990), pooled forecasts could
be seen as the forecasts by a completing-type model which could alleviate the
misspecification problems of the competing models.

3.3. Non-nested tests

The problem of comparing M! and M? with respect to their forecasting perfor-
mance can be also cast in the non-nested hypothesis testing framework, the non
nested models being those in (2.1). Under the additional hypothesis of normal
errors, the numerator of the Cox test, as explicitly derived by Pesaran (1974)
for the linear regression case®, is proportional to the difference of the log of the
(estimated) variance of us, Gyo, and its prediction made by M, G2 1. Under the
assumption a = 0, b = 1, ¢ = 0, d = 1, the non-nested models to be compared

become
M'= g =9} +uy, uy~iidN(0,01), (3.7)
M? =  yy =72 +uy, uy ~ii.d.N(0,02,). '

In this case, following Pesaran (1974), the Cox statistic for the first model versus
the second one can be written as

Blog(MSFE?/MSFE?)

cp = ,
| e 2 U =7 ) )

where 7' and %2 are the N x 1 vectors of forecasts from M! and M?. The sta-
tistic is distributed as N(0, 1) for large T" and N. Its interpretation as a MSFE
encompassing test is straight forward. Given that MSFE?/MSFE? = 1 if and
only if E[(y; — 4})(@ — §7)] = 0, the tests for ¢ = 0 in (3.1) or £ = 0 in (3.3)
provide simpler alternatives.

As an alternative to Cox procedure, Atkinson (1970) suggested embedding the
non-nested models into a nesting framework, by taking a weighted combination
of them. The test is then that the weight associated to one model is equal
to zero. In our case the nesting framework is provided by equation (3.4), and
the test is the t-statistic for ¢ = 0, which again admits an immediate MSFE
encompassing interpretation. Under the hypothesis e = 0, f +¢ = 1 this statistic
also corresponds to the out-of-sample version of the C test by Davidson and
MacKinnon (1981).

3See also MacKinnon (1983) for some simplifications.



3.4. Some extensions

So far we have assumed that the error terms in the regressions of interest are i.i.d.
variables, e.g., (2.1), (3.2), or (3.4), we have maintained that the variables to be
forecast are stationary, and the parameters of the forecasting models remain stable
over the forecast period. In practice, non linearity in the forecasting models and h-
step ahead forecasting, h > 1, can induce heteroskedasticity and correlation in the
error terms; economic variables are often nonstationary processes, in particular
they can be well represented as processes integrated of order one (I(1)); and
structural breaks do happen, and are one of the major sources of forecast failures
(see e.g. Clements and Hendry (1997b)). These three problems have been already
tackled in the literature, so that we only briefly address them here.

In the case of heteroskedastic correlated errors, OLS estimation with proper
residual variance estimators and related robust tests can be adopted (see e.g. Fair
and Shiller (1989), White (1980)), or a feasible GLS estimation method can be
used (Ericsson and Marquez (1993)).

When the variables are integrated, a first requisite for the competing fore-
casts is to be of the same order of integration as the variables they are referred
to. A second basic requirement is that they cointegrate with the variables. If
any of these two basic properties is not satisfied, it is not worth going on with
the comparison. As far as MSFE encompassing tests are concerned, I(1)-ness
increases the rate of convergence of the estimators in level regressions, but com-
plicates inference because standard distribution theory no longer holds (Sims et
al. (1990)). Moreover, care as to be exerted to avoid running unbalanced or mis-
specifed regressions when some kind of stationarity transformation is adopted.
In particular, as noticed by Ericsson (1992), equation (3.3) no longer provides
a proper framework for a MSFE encompassing test because just when %} is an
unbiased forecast, which we recall is the condition for (3.3) to be valid with sta-
tionary variables, the stationary variable y — 7} is regressed on the I(1) regressor
vt

To avoid this problem, Ericsson (1992) suggested to adopt equation (3.1).
Yet, this is a proper choice only if both 7} and 77 are unbiased, which guarantees
stationarity both of the dependent and of the independent variables. Moreover,
the gains from a faster rate of convergence of the estimators are lost. A preferable
formulation seems again equation (3.4), combined with the distribution theory by
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Phillips and Hansen (1990) to test for the hypotheses of MSFE encompassing and
unbiasedness of ;. As an alternative, we suggest to reparametrize (3.4) into the
ECM formulation

Ay, = e+ A + gAT; + h(ye-1 = by 1) + k(ye 1 — dgi 1) + w. (3.8)

M! MSFE encompasses M? for f = b, g = 0, h = —1,k = 0, and viceversa for
f=0,9g=4d, h =0k = —1. Tests for these hypotheses now have a standard
distribution. Yet, the tests run in the regression in levels (equation (3.4)) can
handle more general error terms, while the hypothesis of i.i.d. errors is important
in the ECM (3.8).

Finally, structural changes are only a problem if they are not properly taken
into account in the forecasting models, e.g. by means of some type of intercept
corrections, and therefore affect the relationship between actual and fitted values.
Whether this is the case can be checked by means of tests for parameter constancy
in the regressions of subsections 3.1 and 3.2, e.g. Hansen (1992); but if non-
constancy is detected it is difficult to prescribe a general remedy.

4. Multivariate MSFE encompassing tests

We now assume that z is a n x 1 vector of variables whose forecasts by M! and
M2 are the n x 1 vectors Z} and 27, with

M'=  xy=a+ B3} +uy, uy~i4.d.(0,Q4), cov(uy,zr )=0 i>0,
M?*=  x=c+ D% +uy, wug ~i.id.(0,Q,), cov(ugy,zi ,)=0 i>0,
(4.1)
where a, ¢ are n X 1 vectors while B, D are n x n matrices. To start with, we
wish to discuss alternative tests for trace MSFE encompassing, where the MSFE
matrix implied by the two models is

E(?ﬁt)? E(elﬁeét) E(eiteizt)
Pt — Blefey)  Bleh)* .. E(eyen)
E(eﬁtefn) E(eétefﬁ) E(efn)Q
eét =T — ﬁ;t, j=1,..,n,and i =1,2.

11



Trace MSFE encompassing of M! for M? requires tr(®?) = tr(®%), where ®7,
the prediction of M! for ®2, is

02 = o' 1 Bz} - 303 - 1) +2B[a+ (B - DED)@E -], (42)
while ®2 can be written as
0 =o' + B(@} —2)(@) — 7)) +2B(x — 31) (3 — 77) . (4.3)
Hence, to have trace MSFE it must be

tr(E(zy — 21)(@ - 27)) = tr(El(a + (B - 1))@ - 7)) ]).  (44)

It immediately follows that when the forecasts in ] are unbiased and B is diag-

onal, the condition simplifies to
tr(B(x, — 23)(@ — 7)) = 0. (4.5)

Trace MSFE dominance is often employed as a tool for selecting a multivari-
ate forecasting model. However, as in the univariate case, when the forecasts are
unbiased it is necessary but not sufficient for trace MSFE encompassing. The
latter implies trace MSFE dominance, because F(Z — 77)(Zf — 27) is a sym-
metric matrix so that its trace is non negative. These relationships no longer
necessarily hold when the forecasts are biased. Notice also that while variable by
variable MSFE dominance and encompassing imply trace MSFE dominance and
encompassing, the converse is not necessarily true.

A first possible test for trace MSFE encompassing requires to run n type-(3.4)
regressions, namely,

Tjp =e+ ff}t —&—gf?t +uy, j=1,...,m, (4.6)

and test the hypothesis ¢ = 0 in each of them. In order to have an overall
size of a, the size of each test should be equal to a/n. (4.6) is a system of
seemingly unrelated regression equations (SURE, see Zellner (1962)), and Nelson
(1972) proposed to estimate it by means of GLS in order to obtain more efficient
estimators than OLS. Trace MSFE encompassing is accepted when the hypothesis
g = 0 is accepted in each equation. Yet, as mentioned, this is a sufficient but not
necessary condition for trace MSFE encompassing, so that in particular cases the
latter could be wrongly rejected.

12



In order to avoid this problem, the n variables and forecasts can be stacked
into the nN x 1 vectors X, X', X?2. These are then used in the regression

X =e+ fX} +gX}+U;, 1=1,..,nN, (4.7)

and a t-test for ¢ = 0 is performed. In general, the error term in (4.7) is het-
eroskedastic. The varying variance can be estimated from the system in (4.6), so
that GLS estimation is feasible. Under the null hypothesis, using (4.7) instead of
(4.6) can be also advantageous because of the larger number of available observa-
tions. Yet, we are imposing that the values of the constant and of the coefficient
of the first forecast are equal for all variables, an hypothesis that can be relaxed
by inserting proper dummies in the regression, at the cost of loosing degrees of
freedom. Individual properties such as forecast unbiasedness and efficiency could
then also be tested in this framework.

As far as efficiency is concerned, in (4.7) and in (4.6) we are assuming that
the forecasts of other variables from the two models are not relevant explanatory
variables. This hypothesis can be also relaxed, considering the system of equations

xp = c+E7 + H3? + vy, (4.8)

where Z and H are n X n matrices of parameters and ¢ is an n x 1 vector of
constants. (4.8) boils down to (4.6) when E and H are diagonal. The joint
hypothesis of efficiency and encompassing requires therefore = = diag, H = 0
while if ¢ = 0, Z = I the forecasts from M! are also unbiased. Notice that in this
case encompassing is with respect to ®2, the MSFE matrix for M?, which implies
trace MSFE encompassing.
When Z + H = I, which holds for example when 2! is unbiased, (4.8) can be
re-written as
rp — 2 = c+ H(Z} — 7)) + v (4.9)

A test for H = 0 in (4.9) is invariant to isomorphic dynamic transformations
of the underlying system for the x variables and corresponding forecasts, while
this is not true in (4.8). This property follows from invariance of the 1-step
ahead forecast errors to these transformations, and it also holds for the univariate
case, see Clements and Hendry (1993). Under the null hypothesis, the test is
also invariant to contemporaneous linear transformations (Clements and Hendry

(1997a, Ch. 10.3)).
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To conclude, Clements and Hendry (1993) suggest to use the determinant
of the MSFE matrix for forecast comparisons instead of its trace, because the
former is invariant to both dynamic and linear transformations.* ® encompassing
is sufficient but not necessary for determinant MSFE encompassing, so that it
seems interesting to consider a specific test for the latter property. We propose to
use the multivariate version of the Pesaran (1974) test, which was developed by
Pesaran and Deaton (1978). We provide an explicit formula for the case where
both sets of forecasts are unbiased, but this assumption can be easily relaxed at
the cost of further notational complexity. The models to be compared are

M'=  x =3 +uy, uy~iid.N0,O),
M?* = 2 =32 +ug, ugy ~i4.d.N(0,0?),

and the test statistic is

log %
PD = % < N(0,1), (4.10)

w2

where

Vo= (X' =X){(@) oM@ Te )+
—((@) e DX'TIXY((3) e DHX - X?),
v o= X'((@) 'enx.

5. An empirical example

In this section we present a simple empirical example in order to illustrate some
of the previous theoretical results. We analyse the (yearly) deficit to gdp ratio
and the inflation forecasts from the IMF for the G7 countries, over the period
1975-1994. These are two important variables for fiscal and monetary policy, and
it seems therefore important to evaluate how accurate their forecasts are.

We consider current year forecasts, in the terminology e.g. of Artis (1988,
1997), namely those for period ¢ published in the May issue of year ¢ of the World
Economic QOutlook. The actual data are the first released values, which appear

4In the case of h-step ahead forecasting, they suggest to use the determinant of the second
moment matrix of the stacked j-step ahead forecast errors, j = 1,..., h.
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in the May issue of year t + 1 of the Outlook. A comparison with the OECD
and EC deficit forecasts is presented in Artis and Marcellino (1998a, 1998b).
Here we use as alternative forecasts those based on a random walk model for the
variables, which therefore coincide with the actual values for year t — 1 (which
become available at the same time as the IMF forecasts). Hence, g} = g{M¥,
U7 = yi—1. We can anticipate that, notwithstanding the likely misspecification
of the random walk model (the persistence of most variables is rather low), and
the larger information set embodied in the IMF forecasts, the alternative naive
forecasts seem to perform rather well in some cases. We argue that this is due
to the robustifying role of differencing in the presence of structural changes (see
e.g. Clements and Hendry (1997b)).

In Table 5.1 we summarise the results for the deficit to gdp ratio forecasts.?
The second column presents the ratio of the root MSFE of the IMF forecasts
to that of the random walk (RW) forecasts. It is larger than one for Japan,
Germany, and Italy, indicating that for these countries 77 MSFE dominates 7.
The third and fourth columns report tests for unbiasedness of the forecasts. These
are t-tests for ¢ = 0 and d = 0 in the regression

Y — 9 = c+dg; +w,  i=IMF,RW. (5.1)

Unbiasedness is rejected in several cases for the IMF forecasts, with the exception
of Canada and UK, while the RW seems to perform better in this respect with
rejection only for Canada, Japan, and Germany.

These results suggest that the standard versions of the MSFE encompassing
tests are not appropriate, and they should be modified as, e.g., in (3.2). The
next four columns in Table 5.1 report the standard and modified test statistics
for the IMF and RW forecasts, based respectively on the regression models (3.1)
and (3.2). From the fifth column, the IMF forecast errors can be explained
by the forecast difference §? — 4} for Japan, Germany and Italy, the countries
where the RW forecasts MSFE dominate. Yet, from the seventh column, when
the residuals from equation (5.1) are used as dependent variables, the forecast

5 All the calculations were performed with PcGive and PcFiml 9.01, see Hendry and Doornik
(1997), Doornik and Hendry (1997). Detailed results are available upon request. In particular,
the residuals of the regression models used when testing for unbiasedness and encompassing in
general pass diagnostic checks for no autocorrelation, homoskedasticity, and normality, and the

parameters are stable over time.
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difference remains significant only in the case of Japan. Thus, the IMF MSFE
encompasses the RW also for Germany and Italy. Instead, there are no changes in
the significance of the statistics when testing whether the RW MSFE encompasses
the IMF. This is the case for Japan, Germany, and Italy.

The last two columns of Table 5.1 report the t-tests for the significance of
yi and g7 as explanatory variables of y; in equation (3.4). The results are in
agreement with those from the modified tests. The two forecasts are never jointly
significant, 72 is relevant only for Japan, while none of them is significant for
Germany and Italy. The outcome for Italy could be due to collinearity problems,
the correlation among the two forecasts is 0.90 while it is 0.27 for Germany.
This problem could be solved by adopting the regression in (3.6); the correlation
between the regressors drops to 0.61, but the result of the test does not change.

The IMF performs much better in forecasting inflation. From Table 5.2 it
always MSFE dominates the RW. Moreover, the forecasts are unbiased for all
countries, while bias arises for Japan, Germany, and UK in the case of the RW.
The values of the standard and modified MSFE encompassing tests are quite close
for the IMF, which has to be the case because of unbiasedness. The IMF MSFE
encompasses the RW for all countries, apart from US and Canada. The RW never
encompasses the IMF. These results are confirmed by the joint tests, which also
highlight the potential benefits in terms of MSFE reduction from pooling the IMF
and RW forecasts for US and Canada.

We can now move to the joint analysis of the deficit to gdp ratio and inflation
forecasts. The second and third columns of Table 5.3 report the ratio of the
trace and determinant of the MSFE matrix, ®, for the IMF to those for the
RW. The IMF does better in all cases; the worse performance in some deficit
forecasts is more than compensated by the good one in forecasting inflation. The
fourth column reports the test for efficiency, i.e., for the irrelevance of the deficit
forecasts in explaining inflation, and viceversa. Formally, it is a Wald test for =
and H diagonal in (4.8), an hypothesis that is accepted for all countries

The fifth and sixth columns present the joint test for efficiency and ¢ encom-
passing. The IMF @ encompasses the RW in all cases (H = 0 in (4.8)), apart
from Japan and Germany, and therefore it also encompasses RW with respect
to the trace and determinant of ®. The RW never encompasses the IMF. The
last column of Table 5.3 contains the test for the joint hypothesis of efficiency,
encompassing, and unbiasedness of both IMF forecasts. It is accepted for France

16



Table 5.1: Deficit forecasts.

RMSFFE Bias Encompassing
Standard Modified Joint
IMF /RW IMF RW IMF RW IMF RW IMF RW
Us 0.81 le==290 te=151" 0 564 086 518 521 —115

t;=—382 ;=170
t,=—165  t,=2.60
tp=—110  t;=2.62
t,=—1.19  t.=1.50
ty=—426 t; =235
GER  1.11 fe=—431" 1.=310 S50 138 _102 028 102 084
ty = —4.57 ty = 3.37
FR 0.81 fe==215 " te=149 o0 540 _065 3.62 351 063
tp=—201 ;=120
t,=—428 1, =1.60
tp=—499 ;=166
t.=0.11 t.=1.18
tp=—168  t;=154

CAN 0.79 —-0.15 396 -—-0.01 239 284 -0.04

JAP 1.88 -4.81 1.14 -244 191 190 2.53

T 1.42 -3.69 038 0.10 1.51 192 -0.35

UK 0.83 —-0.60 394 -0.21 336 350 0.34

“Bias”: t-tests for ¢ = 0 and d = 0 (. and ty) in the regression (5.1).
“Standard” IMF: t-test for ¢ = 0 in equation (3.1) with IMF=1, RW=2.
“Standard” RW: t-test for ¢ = 0 in equation (3.1) with IMF=2, RW=1.
“Modified” IMF: t-test for ¢ = 0 in equation (3.2) with IMF=1, RW=2.
“Modified” RW: t-test for ¢ = 0 in equation (3.2) with IMF=2, RW=L1.
“Joint” IMF (RW): t-test for f =0 (g = 0) in equation (3.4).

Significant values are reported in boldface.
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Table 5.2: Inflation forecasts.

RMSFFE Encompassing
Standard Modified Joint

IMF /RW IMF RW IMF RW IMF RW IMF R

Us 0.31 te = —0.16 fe = 1.27 298 —14.7 292 -104 13.7 -3
ty =013 t;=—1.54

CAN 0.65 fe=—088 fe = 0.91 278 —691 356 —-464 783 -3
tr =123 tp=—1.20

JAP 0.53 fe = —0.44 fe = 1.14 127 —788 142 —577 697 —1
tp=—0511 t;=-2.03

GER  0.49 fe = —0.62 te = 2.02 011 —7.98 002 —-423 643 -0
ty=0.56 t;=—257

FR 0.72 fe =079 =019 oy 507 _143 486 490 L.
t;=—0.29 ty=—0.47

IT 0.59 te = 1.67 fe = 0.80 021 —6.76 053 —669 6.64 -0
t;=—1.03 ty =—0.99

UK 0.35 fe=—0.13 fe = 1.51 048 —125 019 —6.35 113 -0
tf = 0.06 tf = —-2.00

“Bias”: t-tests for ¢ = 0 and d = 0 (. and ty) in the regression (5.1).
“Standard” IMF: t-test for ¢ = 0 in equation (3.1) with IMF=1, RW=2.
“Standard” RW: t-test for ¢ = 0 in equation (3.1) with IMF=2, RW=1.
“Modified” IMF: t-test for ¢ = 0 in equation (3.2) with IMF=1, RW=2.
“Modified” RW: t-test for ¢ = 0 in equation (3.2) with IMF=2, RW=L1.
“Joint” IMF (RW): t-test for f =0 (g = 0) in equation (3.4).

Significant values are reported in boldface.

18



Table 5.3: Deficit and Inflation forecasts, joint analysis.

tr(P) |D| Eff.  Eff+Enc.  Eff.+Enc.+Unb.
IMF/RW  IMF/RW IMF RW
USs 0.24 0.08 746 101 197 39.6
CAN 0.47 0.61 795 11.0 548 22.9
JAP 0.49 0.99 1.85 21.8 14.2 —
GER 0.40 0.28 7.62 13.9 103 —
FR 0.54 0.36 4.64 9.04 49.7 13.4
T 0.72 0.76 8.04 919 176 49.8
UK 0.17 0.09 499 511 95.0 12.3

Eff.: Wald test (x%(4)) for Z and H diagonal in (4.8).

Eff.+Enc. IMF: Wald test (x2(6)) for Eff. and H = 0 in (4.8).
Eff.+Enc. RW: Wald test (x2(6)) for Eff. and = = 0 in (4.8).
Eff.+Enc.4+Unb.: Wald test (x?(10)) for c =0, Z =1, H = 0 in (4.8).

Significant values are reported in boldface.

and UK.

To conclude, notice that as a consequence of efficiency the system in (4.8) is
made up of two equations like (3.4) for the deficit ratio and inflation. Yet, the re-
sults on encompassing and unbiasedness from the joint analysis differ from those
from the univariate analysis. In particular, encompassing was rejected for the US
and Canada in the case of inflation forecasts, as well as unbiasedness of the French
IMF deficit ratio forecasts. Strictly speaking, the results of the univariate and
multivariate tests cannot be compared because of the different null hypotheses
and distributions of the statistics. Yet, in our case, the partly mismatching con-
clusions are likely due to the validity of only some of the components of the joint
hypotheses under analysis. Overall, the univariate and multivariate approaches
can be considered as complementary rather than substitute.

6. Conclusions

MSFE encompassing is an important and easily testable property. Hence, testing
for its validity should become a first step in forecast comparison exercises. We
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have extended the standard definitions and testing procedures to let the forecasts

under comparison be biased, that is quite common in practice. We have also

clarified the relationship with non-nested tests, and introduced Cox-type MSFE

encompassing tests. The empirical analysis supports the practical usefulness of

these generalizations.

Similar extensions could be developed for other notions of forecast encompass-

ing, which is relevant when the forecasting models are known and of manageable

size. This represents an interesting subject for future research.
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