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1 Introduction

The term structure of interest rates describes the relationship between the yield of a bond

and its maturity. Given the high correlation among bond yields of different maturities, most

models rely on a small number of factors to explain the time-series variation of the term

structure. Starting with the classic Vasicek (1977) model, the term structure is typically

characterized by the current realization and the dynamics of a set of exogenous state

variables. Furthermore, most empirical implementations of these factor models have focused

on the special cases of affine term structure models (ATSMs) of Duffie and Kan (1996)

and Dai and Singleton (2000).1 ATSMs accommodate time-varying moments of the state

variables through affine specifications of the risk-neutral drift and variance functions. At the

same time, they deliver essentially closed-form expressions for bond prices.

The empirical research on particular specifications of ATSMs is extensive but, despite the

popularity of ATSMs, the tools available for estimation are limited. Existing econometric

methods can be roughly categorized as follows:

• Bond returns. Given the closed-form expressions for bond prices, we can derive a set

of cross-sectional moments that involve only observed returns of bonds with different

maturities and that can be used for GMM estimation (Brown and Dybvig, 1986;

Gibbons and Ramaswamy, 1993). However, much information in the data is potentially

lost by estimating the model from noisy unconditional moments of bond returns as

opposed to estimating the model from more precise conditional bond prices.

• State variable proxies. If we assume that the state variables are observable or can be

proxied for by observable variables, estimation of the model with ML, QML, or different

forms of GMM is straightforward. A common example is to assume that the one-month

interest rate is a proxy for the instantaneous short rate (the state variable) (Marsh and

Rosenfeld, 1983; Chan, Karolyi, Longstaff, and Sanders, 1992; Nowman, 1997). But,

as Chapman, Long, and Pearson (1999) illustrate, differences between the proxies and

state variables can lead to economically significant biases in the inferences.

• Implicit state variables. Given the closed-form expressions for bond prices, we can

invert any n bond prices, which are assumed to be error-free, into the n state variables

and then use these implicit state variables in the estimation as if they were directly

1ATSMs include the factor models of Vasicek (1977), Langetieg (1980), Cox, Ingersoll, and Ross (1985),
Jamshidian (1989, 1991, 1992), Heston (1991), Chen and Scott (1992), Longstaff and Schwartz (1992), and
Chen (1996). Prominent exceptions are the quadratic term structure models of Beaglehole and Tenney (1992),
Constantinides (1992), and Ahn, Dittmar, and Gallant (2001).
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observable (Pearson and Sun, 1994; Chen and Scott, 1993; Fisher and Gilles, 1996; Dai

and Singleton, 2000). The problem is that, in practice, different choices of the reference

bonds imply different state variable realizations, which is of course inconsistent with

the model. To not immediately reject the common factor structure of the model, we

must therefore assume that all bonds except for the n bonds used in the inversion

are priced or measured with error. This dichotomy in the error assumptions for the

reference bonds versus all other bonds is obviously difficult to rationalize.

• Panel of noisy bond yields. If we accept that all bonds are priced or measured with

error, we can rewrite the ATSMs in state-space form:

measurement equation yt = A + Bzt + εt

transition equation zt = κ(θ − zt)dt + Σ
√

StdWt,
(1)

where St is a diagonal matrix with {St}ii = αi + β′izt, yt is a vector of the bond

yields at time t with different maturities, zt is a vector of state variables, εt are

normally distributed errors, and the remaining quantities are model parameters. If

we then discretize the transition equation and pretend that the innovations to the

discretized transition equation are normally distributed, we can use the Kalman filter to

estimate the model (Chen and Scott, 1995; Jegadeesh and Pennacchi, 1996; Babbs and

Nowman, 1999; Duan and Simonato, 1999; De Jong, 2000; Duffee and Stanton, 2001).

Unfortunately, the innovations to the discretized transition equation are only normally

distributed if βi = 0 for all i, which corresponds to a multivariate Vasicek (1977) model.

Otherwise, for the majority of ATSMs, we are dealing with a non-Gaussian state-space

model, which means that the Kalman filter-based estimates are only QML estimates

that are potentially inconsistent (see Lund, 1997) and certainly inefficient.

We propose a simulated maximum likelihood (SML) method for estimating affine term

structure models from noisy panel data that overcomes the problems of the Kalman filter-

based QML estimates. In particular, we use the importance-sampling approach of Durbin

and Koopman (1997, 2001a) to correct the likelihood function of the QML estimator for the

non-normalities introduced by the affine factor dynamics. Depending on the accuracy of the

correction, which is determined by the number of simulations, the quality of the estimator

ranges from QML (no correction) to exact ML.

Despite the obvious appeal of the panel data approach, there has been relatively little

work on overcoming the problems with QML. Lund (1997) and Baadsgaard, Nielsen, and

Madsen (2000) use a non-linear filter, instead of the Kalman filter, to obtain consistent
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estimates of the level of the latent factors, but still end up with inconsistent QML estimates

of the model parameters (because they assume that the filtering errors are Gaussian). Our

SML estimator is most closely related to the Bayesian Markov chain Monte Carlo (MCMC)

approach of Frühwirth-Schnatter and Geyer (1998). They use the QML likelihood as a

proposal density to obtain draws from the posterior density of the model parameters, while

we use the QML likelihood as an importance-sampling density to evaluate the likelihood

function of the model (which we then maximize to obtain the SML parameter estimates).

Given sufficiently flat priors, the two methods should lead to similar inferences.

The paper proceeds as follows: Section 2 explains the SML method and relates it to the

more standard QML approach; Section 3 demonstrates the finite sample properties of our

estimator through Monte Carlo experiments; Section 4 offers an empirical application for

one- and two-factor Cox, Ingersoll, and Ross (CIR,1985) models; and Section 5 concludes.

2 Simulated Likelihood Estimation

2.1 Affine Term Structure Models

We first provide a brief review of affine term structure models (Duffie and Kan, 1996; Dai

and Singleton, 2000). Absent arbitrage opportunities, the time t price of a zero-coupon bond

that matures at time t + τ , denoted P τ
t , is given by:

P τ
t = EQ

t

[
exp

{
−

∫ t+τ

t

rs ds
}]

, (2)

where EQ

t [· ] denotes a conditional expectation under the risk-neutral measure Q. An n-factor

affine term structure model is obtained under the assumption that the instantaneous short

rate rt is an affine function of a vector of unobserved state variables zt = [z1t, z2t, ..., znt]:

rt = δ0 +
n∑

i=1

δizit = δ0 + δzzt (3)

and that zt follows an affine diffusion:

dzt = κQ(θQ − zt)dt + Σ
√

StdW Q

t , (4)

where W Q

t is an n-dimensional independent standard Brownian motion under the risk-neutral

measure, θQ is an n-vector, κQ and Σ are n×n matrices, which may be non-diagonal and
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asymmetric, and St is an n×n diagonal matrix with the ith diagonal element:

{St}ii = αi + β′izt. (5)

The key feature of affine diffusions is that both the drift and the conditional variance are

affine functions of the state variables zt.

Provided a parameterization is admissible, we know from Duffie and Kan (1996) that:

P τ
t = exp

{
A(τ) + B(τ)′zt

}
(6)

or, denoting the yield of the bond by yτ
t , that:

yτ
t = −1

τ
ln P τ

t = −1

τ

[
A(τ) + B(τ)′zt

]
, (7)

where A(τ) and B(τ) satisfy the ordinary differential equations (ODEs):

dA(τ)

dτ
= θQ′κQ′B(τ) +

1

2

n∑
i=1

[
Σ′B(τ)

]2

i
αi − δ0

dB(τ)

dτ
= −κQ′B(τ) +

1

2

n∑
i=1

[
Σ′B(τ)

]2

i
βi − δz.

(8)

These ODEs, which can be solved easily through numerical integration starting from the

initial conditions A(0) = 0 and B(0) = 0n×1, are completely determined by the specification

of the risk-neutral dynamics of the state variables zt.

In order to empirically implement ATSMs, we also need to know the dynamics of zt under

the actual measure P . For this we need to make an assumption about the market price of

risks Λt, such as:

Λt =
√

Stλ, (9)

where λ is an n-vector of constants. Under this particular assumption about the market

prices of risk, the process for zt under the actual measure also has an affine form:

dzt = κ(θ − zt)dt + Σ
√

StdWt, (10)

where Wt is an n-dimensional vector of independent standard Brownian motions under the
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actual measure and:

κ = κQ − ΣΦ

θ = κ−1(κQθQ + Σψ).
(11)

The ith row of the n×n matrix Φ is λiβ
′
i and ψ is an n-vector whose ith element is λiαi.

Any sensible parameterization of ATSMs must be both theoretically admissible and

econometrically identified. Dai and Singleton (2000) discuss the parameter restrictions that

these two requirements place on the general class of models described above. They propose a

classification scheme that assigns any admissible ATSM to a unique canonical representation

with identical econometric implications for the instantaneous short rate and hence for bond

prices. Throughout this paper, we assume that we are dealing with such canonical ATSMs,

so that the admissibility and identification requirements are automatically satisfied.

2.2 State-Space Representation

The fact that in ATSMs the bond yields are linear functions of the state variables implies

that the covariance matrix of k yields for maturities {τ1, τ2, . . . , τk} is only of rank n. For

reasonable values of n (e.g., n ≤ 3), this implication is decisively rejected by the data.

To reconcile the data with low-dimensional ATSMs, we therefore assume that each bond

is priced or measured with a random error. In particular, we assume normally distributed

additive errors in yields (or log-normally distributed multiplicative errors in prices) that may

be correlated across bonds but are iid through time.2 Formally, we write:

yt = A + Bzt + εt, with εt
iid∼ MVN[0, Ht−1], (12)

where yt = [yτ1
t , yτ2

t , . . . , yτk
t ]′, A = [A(τ1), A(τ2), . . . , A(τk)]

′, B = [B(τ1), B(τ2), . . . , B(τk)]
′,

εt = [ετ1
t , ετ2

t , . . . , ετk
t ]′, and Ht−1 is the potentially time-varying covariance matrix of the

errors.

ATSMs are formulated in continuous time but we only observe data at discrete points

in time. To facilitate econometric inferences based on discrete time data, we work with

the discrete time (e.g., daily or weekly) factor dynamics implied by the continuous time

process (10). We denote this discrete time process:

zt = m(zt−1) + v(zt−1)
1/2 ηt, (13)

2Although the assumption of additive errors in yields is prominent in the literature, Lund (1997) argues
that in certain settings the assumption of additive errors in prices is more appropriate.
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where m(zt−1) = E[zt|zt−1], v(zt−1) = Var[zt|zt−1], and the standardized innovations ηt are

iid with zero mean and unit variance, but are generally not normally distributed.3 Due to the

affine form of the continuous time process, the discrete time conditional mean and variance

functions are both linear in zt−1, so that m(zt−1) = m0 + m1
′zt−1 and v(zt−1) = v0 + v1

′zt−1,

with coefficients that are expressed analytically in the Appendix.

Equations (12) and (13) make up a state-space model. In the terminology of state-

space models, equation (12) is the measurement or observation equation and equation (13)

is the transition or state equation. To draw inferences about the parameters of the

model and the realizations of the latent factors from the observed yields, we need to

solve a set of filtering and smoothing problems. Filtering generates the one-step-ahead

forecasts of the factors ẑt|t−1 ≡ E[zt|y1, . . . , yt−1] and the corresponding forecast covariance

matrix Ωt|t−1 ≡ Var[ẑt|t−1|y1, . . . , yt−1], which in a linear Gaussian state-space model are

used to construct the likelihood function. Smoothing yields the full-information forecasts

of the factors ẑt|T ≡ E[zt|y1, . . . , yT ] and the corresponding forecast covariance matrix

Ωt|T ≡ Var[ẑt|t−1|y1, . . . , yT ]. Unfortunately, the filtering and smoothing problems for ATSMs

are non-standard because the state equation innovations ηt are generally not normally

distributed. This means that the standard Kalman filter, designed for linear Gaussian state-

space models, cannot be used directly to construct the likelihood function of ATSMs.4

2.3 Quasi-Maximum Likelihood Estimation

Consider a multifactor Vasicek (1977) model with β = 0, and hence with normally distributed

discrete time factor innovations ηt, which is the only ATSM that corresponds to a linear

Gaussian state-space model. For this special case, the assumptions of the Kalman filter are

satisfied and ML estimation is straightforward. Intuitively, the likelihood function should be

based on the normally distributed yield errors [yt−A−Bzt] ∼ MVN[0, Ht−1], but these errors

are not measurable at time t because they depend on the latent factors zt. To make the errors

measurable, we replace zt with the filtered estimates ẑt|t−1 from the Kalman filter, which,

under the assumptions of the Kalman filter, are distributed MVN[zt, Ωt|t−1]. Since the yield

and filtering errors are independent, the distribution of the measurable errors [yt−A−Bẑt|t−1]

3For example, in a one-factor CIR model, the innovations ηt have a non-central χ2 distribution.
4The Kalman filter is a recursive algorithm for generating conditional (on the data) forecasts of the latent

state vector in linear Gaussian state-space models. See Harvey (1989) or Hamilton (1994) for details.
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is MVN[0, Ht−1 + BΩt|t−1B
′]. We use this distribution to form the likelihood function:

L(ψ) =
T∏

t=1

(2π)k/2
∣∣Ht−1 + BΩt|t−1B

′∣∣−1/2×

exp
{
− 1

2

(
yt − A−Bẑt|t−1

)′(
Ht−1 + BΩt|t−1B

′)−1(
yt − A−Bẑt|t−1

)}
,

(14)

where ẑ1|0 and Ω1|0 correspond to the unconditional estimates of the initial z1. Finally, ML

estimates of the model parameters are obtained by maximizing L(ψ) with respect to ψ.

For general ATSMs with β 6= 0, and hence with innovations ηt that are not normally

distributed, Kalman filter-based ML estimation breaks down for two reasons. First, the

Kalman filter estimates of zt do not correspond to the conditional expectations of zt given

the observed yields because the Kalman filter relies on a linear projection of zt onto the

linear sub-space of yields (which happens to coincide with the conditional expectations under

multivariate normality). Therefore, we cannot use the filtered estimates to evaluate the

likelihood function. Second, in a non-Gaussian model, the filtering errors, the differences

between zt and the linear projections, are not normally distributed. This means that the

form of the likelihood function evaluated at the filtered estimates is not Gaussian.

Nonetheless, to the extent that the discrete time factor dynamics are almost Gaussian,

perhaps because the data is sampled at high frequency, we might expect the Kalman

filter-based ML estimates to be close to the true ML estimates (based on the conditional

expectations of zt and the corresponding non-Gaussian likelihood function). This naturally

leads to the idea of QML estimation. Beyond the intuitive appeal of QML, there exists

an extensive theory for misspecified inference problems. In fact, in some settings QML

estimators can be shown to be consistent (White, 1982; Bollerslev and Wooldridge, 1992), but

unfortunately, ATSMs do not satisfy the conditions required for consistency (Lund, 1997).

Furthermore, the Monte Carlo evidence is mixed. For highly persistent single-factor models

(which typically have nearly Gaussian factor dynamics even at the monthly frequency), QML

performs reasonably well (Duan and Simonato, 1999); but for multifactor models it exhibits

significant biases (Frühwirth-Schnatter and Geyer, 1998; Duffee and Stanton, 2001).

2.4 Simulated Maximum Likelihood Estimation

We therefore turn to SML estimation. Specifically, we show how to numerically construct the

likelihood function of the non-Gaussian state-space model of ATSMs using an importance-

sampling approach similar to the one used by Durbin and Koopman (1997), Sandmann and

Koopman (1998), and Brandt and Kang (2001) in different contexts. The basic idea of the
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estimator is to correct the likelihood function of the QML estimator for the non-normalities

introduced by the affine factor dynamics.

2.4.1 Correcting the QML Likelihood Function

Let y and z denote the T × k and T × n matrices [y1
′, y2

′, . . . , yT
′]′ and [z1

′, z2
′, . . . , zT

′]′,

respectively. The exact likelihood function of the model is:

L(ψ) = p(y|ψ)

=

∫
p(y, z|ψ) dz

=

∫
p(y|z, ψ) p(z|ψ) dz.

(15)

The first line of equation (15) defines the likelihood function as the density of the observed

bond yields y given the parameter ψ. The second line expresses this density as the marginal

density of the yields obtained from the joint density of y and the latent factors z. Finally, in

the third line we write the joint density of y and z as the product of the conditional density

of y given z and the marginal density of z.

The point of this algebra is that the likelihood function L(ψ) can be viewed as an

expectation of the conditional density p(y|z, ψ) with respect to the marginal density p(z|ψ).

With T data points and n latent factors z, this expectation involves an n × T dimensional

integral. The high dimensionality of the integral and the nonlinearities of the conditional

density p(y|z, ψ) make it practically impossible to compute this expectation analytically. We

therefore rely on an importance-sampling scheme, based on the misspecified QML likelihood,

to evaluate the exact likelihood function numerically.5

The SML estimator is based on the relationship between the exact likelihood function

in equation (15) and the likelihood function of the QML estimator described in Section 2.3.

5In principle, the latent factors z can be sampled directly from the density p(z|ψ) and Monte Carlo
integration can then be used to solve the integral in the third line of equation (15). In practice, however, this
brute-force simulation approach is grossly inefficient. We can greatly improve the efficiency of the Monte
Carlo integration through the use of importance sampling.
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The QML likelihood function can be written as:

LQML(ψ) = pQML(y|ψ)

=
pQML(y, z|ψ)

pQML(z|y, ψ)

=
pQML(y|z, ψ) pQML(z|ψ)

pQML(z|y, ψ)

=
p(y|z, ψ) pQML(z|ψ)

pQML(z|y, ψ)
.

(16)

The first line of equation (16) defines the likelihood function, the second line follows from

the definition of a conditional probability P (A|B) = P (A,B)/P (B), and in the third line we

again write the joint density of y and z as the product of the conditional density of y given

z and the marginal density of z. The most important step is replacing the QML conditional

density pQML(y|z, ψ) in the third line with the true conditional density p(y|z, ψ) in the fourth

line. This replacement is possible because the true model and the approximate QML model

are based on the same linear measurement equation (12), which means that for the same z

and ψ, the conditional densities of y are also the same.

Solving the last line of equation (16) for:

p(y|z, ψ) = LQML(ψ)
pQML(z|y, ψ)

pQML(z|ψ)
(17)

and substituting it into equation (15) yields:

L(ψ) =

∫
p(y|z, ψ) p(z|ψ) dz

= LQML(ψ)

∫
p(z|ψ)

pQML(z|ψ)
pQML(z|y, ψ) dz

= LQML(ψ) EQML

[
p(z|ψ)

pQML(z|ψ)

∣∣∣∣y, ψ

]
.

(18)

In summary, the true likelihood function L (ψ) can be expressed as the product of the QML

likelihood function LQML(ψ) and a correction factor EQML[w(z)|y, ψ], where for notational

convenience we define:

w(z) =
p(z|ψ)

pQML(z|ψ)
. (19)

The correction factor characterizes the departure of the true likelihood from the QML
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likelihood as the average distance between the marginal densities p(z|ψ) and pQML(z|ψ).

If the two densities are close to each other, the function w(z) is close to one and so is its

expectation with respect to the QML inferences about the latent factors pQML(z|y, ψ).

To evaluate the true likelihood function L(ψ), we need to evaluate the QML likelihood

function LQML(ψ), which is straightforward, and the corresponding likelihood correction,

given by the expectation of w(z) with respect to the smoothed QML inferences about the

latent factors pQML(z|y, ψ). However, even if we can evaluate w(z) for a given factor history z

(an issue we discuss below), its expectation cannot generally be computed analytically. We

therefore use simulations to evaluate the correction factor. Specifically, we use Durbin and

Koopman’s (2001b) simulation smoother algorithm to simulate L factor histories {zl}L
l=1 from

the conditional density pQML(z|y, ψ). We then evaluate w(zl) for each zl and average across

all L simulations to obtain the following estimate of the correction factor EQML[w(z)|y, ψ]:

w̄ =
1

L

L∑

l=1

w(zl). (20)

Finally, we use equation (18) to construct an estimate of the likelihood function:

L̂(ψ) = LQML(ψ) w̄. (21)

Since w̄ → EQML[w(z)|y, ψ] as L →∞, it follows that L̂(ψ) converges to L(ψ). Furthermore,

as long as the convergence of the likelihood function is sufficiently smooth, the SML estimator

ψ̂SML that maximizes L̂(ψ) converges to the ML estimator ψ̂ML that maximizes L(ψ).

However, it is typically more convenient to work with the log likelihood function. Taking

logs of equation (21) gives:

ln L̂(ψ) = lnLQML(ψ) + ln w. (22)

But, ln L̂(ψ) is a slightly biased estimator of lnL(ψ) because E[ln w̄] 6= ln E[w]. Durbin and

Koopman (1997) and Shephard and Pitt (1997) suggest adding a term to the log likelihood

function to correct the bias (up to order O(L−3/2)) from the log transformation:

ln L̂(ψ) = lnLQML(ψ) + ln w̄ +
η2

w

2Lw̄2
, (23)

where:

η2
w =

1

L− 1

L∑

l=1

(wl − w̄)2. (24)
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2.4.2 Evaluating the Ratio of Marginal Densities

A critical step in SML estimation is to evaluate the ratio of densities w(z) = p(z|ψ)/pQML(z|ψ)

for a given factor history z. Since the factor dynamics under both the true and QML

models are first-order Markov, the numerator and denominator of w(z) can be expressed as

products of one-step-ahead transition densities, p(z|ψ) = p(z0|ψ)
∏T

t=1 p(zt, t|zt−1, t − 1, ψ)

and pQML(z|ψ) = pQML(z0|ψ)
∏T

t=1 pQML(zt, t|zt−1, t− 1, ψ), respectively. For the QML model,

the unconditional distribution of z0 and the one-step-ahead transition densities are all

Gaussian by assumption. Evaluating pQML(z|ψ), the denominator of w(z), is therefore

straightforward. However, for the true model, these densities are not only generally non-

Gaussian, which is the source of the problems with QML, but are also often analytically

unknown. This makes evaluating p(z|ψ), the numerator of w(z), more problematic.

To focus the discussion, it is useful to differentiate between three cases: (i) multifactor

Vasicek models with α 6= 0 but β = 0, (ii) multifactor CIR models with α = 0 but β 6= 0, and

(iii) general ATSMs with α 6= 0 and β 6= 0. For Vasicek models, p(z0|ψ) = pQML(z0|ψ) and

p(zt, t|zt−1, t−1, ψ) = pQML(zt, t|zt−1, t−1, ψ), so that w(z) = 1 for all z and L(ψ) = LQML(ψ).

For CIR models, p(z0|ψ) and p(zt, t|zt−1, t− 1, ψ) are non-Gaussian, which means w(z) 6= 1

for some z and L(ψ) 6= LQML(ψ), but can be evaluated analytically because they are Gamma

and non-central χ2 densities, respectively. In this case, evaluating the numerator of w(z) is

only slightly more complicated than evaluating the denominator. Finally, for general ATSMs,

p(z0|ψ) and p(zt, t|zt−1, t− 1, ψ) are unfortunately analytically unknown.

There are at least two ways to implement the estimator when the densities are unknown.

First, p(z0|ψ) and p(zt, t|zt−1, t− 1, ψ) can be evaluated numerically using the characteristic

functions method of Singleton (2001) . Second, we can use the Hermite polynomial expansion

method of Aı̈t-Sahalia (2001) to obtain arbitrarily precise analytical approximations of the

densities. In practice, these analytical approximations are more appealing in our context

because of their computational speed and the fact that in each iteration of the likelihood

maximization the T + 1 densities need to be evaluated L times. Even if it takes less than a

second to solve for the densities numerically, with T = 500 and L = 100, it takes 14 hours for

just one evaluation of the likelihood function. In contrast, once the polynomial expansion

coefficients have been computed as a function of the model parameters, which is done only

once, evaluating the analytical density approximations is virtually instantaneous.
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2.4.3 Extracting the Latent Factors

Analogous to the reformulation of the likelihood function, we can obtain an expression for

the smoothed estimates ẑ|T = [ẑ1|T ′, ẑ2|T ′, . . . , ẑT |T ′]′ of the latent factors z. We substitute:

p(y|z, ψ) =
p(y, z|ψ)

p(z|ψ)
=

p(z|y, ψ)L(ψ)

p(z|ψ)
(25)

into equation (17) and solve for:

p(z|y, ψ) =
LQML(ψ)

L(ψ)

p(z|ψ)

pQML(z|ψ)
pQML(z|y, ψ) =

LQML(ψ)

L(ψ)
w(z) pQML(z|y, ψ). (26)

The smoothed estimates of z are then given by:

ẑ|T = E
[
z|y, ψ

]

=

∫
z p(z|y, ψ) dz

=
LQML(ψ)

L(ψ)

∫
z w(z) pQML(z|y, ψ) dz

=
LQML(ψ)

L(ψ)
EQML[w(z)z|y, ψ].

(27)

Finally, we replace the expectation with respect to the smoothed QML inferences with an

average over the simulated factor histories:

̂̂z|T =
LQML(ψ)

L(ψ)

1

L

L∑

l=1

w(zl)zl. (28)

3 Monte Carlo Study

To explore the properties of our SML approach, we conduct a Monte Carlo study for a

single-factor CIR model. Like CIR, we assume that the instantaneous interest rate is rt = zt

(i.e., n = 1, δ0 = 0, and δ1 = 1) and the factor follows a square-root diffusion:

dzt = κ(θ − zt)dt + Σ
√

ztdWt (29)
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(i.e., α = 0 and β = 1). Zero-coupon bond prices are then given by equation (6) with:

A(τ) = ν ln


 2γ exp

{
1
2(κ + λ + γ)τ

}

(κ + λ + γ)
(
exp{γτ} − 1

)
+ 2γ




B(τ) = − 2
(
exp{γτ} − 1

)

(κ + λ + γ)
(
exp{γτ} − 1

)
+ 2γ

, (30)

where ν = 2κθ/Σ2 and γ =
√

(κ + λ)2 + 2Σ2.

The advantage of the CIR model is that the unconditional distribution of z0 is Gamma:

p(z0|ψ) =
1

Γ[ν]φν
zν−1
0 exp{−z0/φ}, (31)

where φ = Σ2/(2κ), and the discrete time transition density of zt is non-central χ2:

p(zt, t|zt−1, t− 1, ψ) =
∆

[
Ψ(zt)/Φ(zs)

](ν−1)/2

exp
{
Ψ(zt) + Φ(zs)

} Iν−1

[
2
√

Φ(zs)Ψ(zt)
]
, (32)

where ∆ = 1/[φ(1 − exp{−κ(t − s)})], Φ(zs) = zs ∆ exp{−κ(t − s)}, Ψ(zs) = zt ∆, and

Iν−1[ · ] denotes the modified Bessel function of the first kind of order ν − 1. These closed-

form expressions for the densities allow us to directly simulate discrete time data from the

model using the inverse-CDF method (as opposed to using a discretization scheme) and

speed up the SML estimation because we can evaluate the ratio of marginal densities w(z)

without having to resort to numerical solutions or analytical approximations.

The experiment proceeds as follows. Setting κ = 0.8, θ = 0.03, σ = 0.1, and λ = −0.5,

which corresponds roughly to our estimates in the next section, we simulate a time-series

of T = 520 weekly factor realizations and generate for each realization a set of k = 5 zero-

coupon bond yields yτ
t for maturities τ of one, three, 12, 60, and 120 months. We then add to

each yield an iid measurement error ετ
t with standard deviation h = 0.005 (i.e., Ht = h2Ik×k)

and apply both the QML and SML estimators to the resulting noisy panel data. Finally, we

repeat the procedure 100 times to obtain sampling distributions of the estimates.

Table 1 reports the across-simulations means and standard deviations of the QML and

SML estimates, where for SML we consider simulation sizes L ranging from 50 to 1000. The

differences between the estimators are striking. For κ, θ, and λ, the SML estimates are less

biased and much less variable than the QML estimates. For example, for the market price

of interest rate risk λ, with a true value of −0.5, the average QML estimate is −0.531 with

a standard deviation of 0.185. The average SML estimate with L = 1000 is −0.503 with a
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standard deviation of only 0.014 (a 13-fold reduction). The relative performance of SML is

equally impressive for the mean-reversion coefficient κ and long-run mean θ.

The roles are reversed for the standard deviation coefficient Σ. Compared to the unbiased

QML estimates, the SML estimates are slightly upward-biased and about twice as variable

across simulations. Intuitively, the reason for this difference in relative performance is that

the simulation-induced noise in filtering the current value of the factor makes the factor

look more volatile that it actually is. Consistent with this explanation, both the bias and

sampling variation of the SML estimator diminish as we increase the simulation size. Finally,

for the standard deviation of the yield errors h, the estimators perform comparably.

4 Empirical Application

4.1 Data

Following Dai and Singleton (2000), we collect weekly data on U.S. dollar LIBOR and swap

rates from Data Stream. The rates are sampled every Wednesday from April 1987 through

December 1999 (666 observations). The LIBOR rates are for three- and six- month maturities

and the swap rates are for one-, two-, three-, five-, seven-, and 10-year maturities. From this

raw data, we infer the zero-coupon yields for 12 points on the zero-coupon yield curve (three,

six, 12, 24, 36, ... 108, and 120 months to maturity) using the bootstrapping method outlined

in James and Webber (2001). We plot the resulting panel of yields in Figure 1.

4.2 Single-factor CIR model

We first estimate the single-factor CIR model assuming, as in the Monte Carlo study, that

the measurement errors are iid and homogeneous in the cross-section with standard deviation

h. We use L = 500 simulations to compute the likelihood correction for the SML estimator,

which in our view represents a sensible compromise between accuracy of the estimates and

computational speed. Panel A of Table 2 presents both the QML and SML estimates.

The two sets of estimates are very similar. They are also consistent with comparable

estimates of the single-factor CIR model in the literature. The mean-reversion speed κ is

0.491, implying a weekly autocorrelation of 0.991 and a half-life of 1.413 years. The long-

run mean of the factor is 1.96 percent and the steady state volatility
√

Σθ is 5.21 percent.

The market price of interest rate risk is negative at −0.456, which together with the other

parameters, implies an asymptotic yield y∞t = 2κθ/(γ + κ + λ) of 8.24 percent. Finally, the

standard deviation of the pricing or measurement errors is fairly large at 43 basis points.
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The differences between the QML and SML estimates are in line with the biases of the

two estimators documented in Table 1. On one hand, the biased QML estimates of κ and

λ are larger in magnitude than the corresponding SML estimates. On the other hand, the

biased SML estimate of Σ is larger than the corresponding QML estimate. The estimates of

θ and h are roughly the same. Notice also that the asymptotic standard errors of the SML

estimates are of the same magnitude as the finite sample standard errors. The asymptotic

standard errors of the QML estimates, in contrast, are much smaller than the finite sample

standard errors. For example, the asymptotic standard error on the market price of risk

is 0.011, compared to the finite sample counterpart of 0.185. This observation serves as a

caution against relying on asymptotic inferences in QML estimation and, at the same time,

illustrates the strength of our SML approach.

As a model specification diagnostic, we report in Panel B of Table 2 the means, standard

deviations, and MSEs of the yield errors yτ
t − A(τ) − B(τ)ẑt, where A(τ) and B(τ) are

evaluated at the estimated parameters and ẑt denotes the smoothed estimate of the latent

factor from the Kalman filter (QML) or from the estimator described in Section 2.4.3 (SML).

The striking feature of the pricing errors is the pronounced u-shape of the standard deviation

across maturities. Bonds with two to four years to maturity are priced much more precisely

than bonds with less than one year or more than five years to maturity. If the data is

generated by a single-factor CIR model, the assumption of iid errors in the cross-section is

clearly false. (An obvious alternative is that the data is not generated from a single-factor

CIR model. We consider this alternative in Section 4.3.)

To accommodate this u-shape in the standard deviation of the errors, we parameterize

the variance of the errors as a function of the time-to-maturity of the bond:

h2(τ) = exp
{
a0 + a1τ + a2τ

2
}
. (33)

The obvious advantage of parameterizing the standard deviation is that it allows for some

heterogeneity in the measurement errors without requiring a separate parameter for each

bond. In particular, with the parameterization (33), the log standard deviation is a quadratic

function of τ that can be u-shaped. We work with logs to ensure positivity.

Table 3 shows in Panel A the QML and SML estimates with heterogeneous measurement

errors, and describes in Panel B the corresponding yield errors. The parameter estimates are

somewhat different from the ones with homogeneous measurement errors. In particular, the

estimated long-run mean θ is smaller at 1.75 percent, and the estimates of κ and λ are larger

in magnitude, implying a weekly autocorrelation of 0.98 and an asymptotic yield of 8.32

percent. These differences illustrate the importance of correctly modeling the measurement
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errors for drawing inferences about the other parameters of the model.

The estimates of a0, a1, and a2 are all statistically significant at the five-percent level. The

signs and magnitudes of the estimates are such that ln h2(τ) is indeed a u-shaped function of

τ that obtains a minimum at approximately τ = 3. This is consistent with Panel B, where

the standard deviation of the pricing errors is smallest for the three-year bond.

The yield errors are not particularly informative about which estimates are closer to the

true parameters because they ignore the time-series dimension of the model. It is possible for

a model to fit well the cross-sections of yields but for the estimated factor dynamics to be a

poor description of the true factor dynamics (Backus, Foresi, and Zin, 1998). To get a better

sense for the quality of the estimates, we conduct the following forecasting experiment.

For each date t, we obtain the smoothed estimates of the latent factor ẑt|T , either from

the Kalman filter (QML) or from the estimator described in Section 2.4.3 (SML), and use

these estimates as an anchor to generate forecasts of the factors m periods in the future

ẑt+m|t through the estimated factor dynamics. We then use these forecasts of the factors to

construct forecasts of the entire cross-section of bond yields and compute the yield forecast

errors yτ
t+m− A(τ)−B(τ)ẑt+m|t.

Table 4 presents the means, standard deviations, and MSEs of the yield forecast errors

for bonds with one, two, five and 10 years to maturity and forecast horizons m ranging from

one week to one quarter (12 weeks). Judging by the magnitude of the MSEs across horizons,

it is obviously more difficult to forecast yields at long horizons than at short horizons. As

a result, the differences between the QML and SML estimates are most pronounced at the

one-quarter horizon, for which a clear pattern emerges. Except for the one-year bond, the

SML estimates produce less biased but more variable forecasts.

This pattern makes sense. The QML estimator produces more biased forecasts for two

reasons. First, the smoothed estimates of the factors from the Kalman filter are biased.

Second, the QML parameter estimates are biased, which means that the forecasts are

potentially even more biased than the Kalman filter-based estimates to which these forecasts

are anchored. The SML estimator produces more variable forecasts because the smoothed

estimates of the factors are contaminated with some simulation error. This illustrates that,

in the end, the choice between QML and SML boils down to a standard bias-versus-variance

tradeoff. It is important to realize, however, that the bias of the QML estimator is set in

stone, while the simulation-induced variance of the SML estimator can always be reduced

by increasing the simulation size L and through variance reduction techniques.
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4.3 Two-Factor CIR Model

The sheer magnitudes of the pricing errors in Tables 2–4 confirm the consensus in the

literature that more than one factor is needed to explain the dynamics of the term structure

(Stambaugh, 1988; Litterman and Scheinkman, 1991). Although a careful analysis of

multifactor term structure models, along the lines of Dai and Singleton (2000) and Brandt

and Chapman (2002), is outside the scope of this paper, we at least consider the two-factor

CIR model of Chen and Scott (1992). Specifically, we assume that the instantaneous interest

rate is rt = z1,t + z2,t (i.e., n = 2, δ0 = 0, δ1 = 1, and δ2 = 2) and each factor follows an

independent square-root diffusion:

dzi,t = κi(θi − zi,t)dt + Σi
√

zi,tdWi,t, (34)

(i.e., αi = 0 and βi = 1). Zero-coupon bond prices are then given by equation (6) with:

Ai(τ) = νi ln


 2γi exp

{
1
2(κi + λi + γi)τ

}

(κi + λi + γi)
(
exp{γiτ} − 1

)
+ 2γi




Bi(τ) = − 2
(
exp{γiτ} − 1

)

(κi + λi + γi)
(
exp{γiτ} − 1

)
+ 2γi

.

(35)

Due to the independence of the factors, the unconditional density of z0 and the transition

density of zt are simply products of the corresponding univariate densities:

p(z0|ψ) =
2∏

i=1

1

Γ[νi]φ
νi
i

zνi−1
i,0 exp{−zi,0/φi} (36)

and

p(zt, t|zt−1, t− 1, ψ) =
2∏

i=1

∆i

[
Ψi(zi,t)/Φi(zi,s)

](νi−1)/2

exp
{
Ψi(zi,t) + Φi(zi,s)

} Iνi−1

[
2
√

Φi(zi,s)Ψi(zi,t)
]
, (37)

where the subscripted coefficients are straightforward factor-specific versions of the

coefficients defined in conjunction with equations (30)–(32).

Table 5 presents in Panel A the QML and SML estimates of the two-factor model with

heterogeneous measurement errors and describes in Panel B the corresponding yield errors

(the results for homogeneous errors are available on request). The estimators identify two

distinctly different factors. The first factor mean-reverts very slowly at a rate of κ1 = 0.154,

which implies a weekly autocorrelation of 0.997 and a half-life of 4.5 years, while the
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second factor mean-reverts much faster at a rate of κ2 = 0.571, which implies a weekly

autocorrelation of 0.989 and a half-life of 1.2 years. Both factors have a negative market

price of risk, with λ2 being about twice as large (in magnitude) as λ1 (so the second factor

co-varies more strongly with the stochastic discount factor). Finally, the estimates of a0, a1,

and a2 imply again that the function h2(τ) is u-shaped in τ with a minimum at τ = 6, which

is consistent with the standard deviations of the measurement errors in Panel B.

Judging by the statistical significance of the parameters corresponding to the second

factor, by the differences between the log likelihoods in Tables 3 and 5, or by the differences in

the corresponding MSEs of the yield errors, it is obvious that the second factor substantially

improves the fit of the model. In particular, the MSEs are uniformly reduced by factors

ranging from 1.5 for the two-year bond to 136 for the eight-year bond.

Comparing the two estimators, the differences between the results are noticeably larger

for the two-factor model than for the single-factor model in Tables 2 and 3. For example, the

SML estimate of κ1 is 0.154 while the QML estimate is 0.246 (a difference of 6.4 standard

deviations). The SML estimate of λ1 is −0.133 while the QML estimate is −0.228 (a

difference of 8.1 standard deviations). These differences between the two sets of estimates

are consistent with the Monte Carlo study of Frühwirth-Schnatter and Geyer (1998), which

documents increasingly severe biases of QML as the number of factors increases.

Finally, Table 6 reports the means, standard deviations, and MSEs of the yield forecast

errors of the two-factor model. Consistent with the improved fit of the model, the magnitude

of the MSEs is reduced substantially at all horizons, relative to the forecast errors of the

single-factor model in Table 4. Furthermore, the pattern in the results is the same as for the

single-factor model. Except for the one-year bond, the SML estimates produce less biased

but more variable (due to the simulation-induced noise) forecasts than the QML estimates.

The resulting MSEs are slighly larger for the one- and ten-year bonds but smaller for the

two- and five-year bonds. This illustrates, once again, that the biases of the QML approach

are noticable in practical applications.

5 Conclusion

In this paper, we proposed a simulated maximum likelihood (SML) method for estimating

affine term structure model from noisy panel data that overcomes the problems of the Kalman

filter based QML estimates. In particular, we used the importance sampling approach of

Durbin and Koopman (1997,2001a) to correct the likelihood function of the QML estimator

for the non-normalities introduced by the affine factor dynamics. Depending on the accuracy
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of the correction, which is determined by the number of simulations, the quality of the

estimator ranges from QML (no correction) to exact ML. We used both a Monte Carlo

study and an empirical application to demonstrate the merrits of our approach.

A natural extention of our estimation approach is to consider the class of quadratic

term structure models (QTSMs) of Beaglehole and Tenney (1992), Constantinides (1992),

and Ahn, Dittmar, and Gallant (2001), among others. In the state-space representation

of a QTSM, the measurement equation is non-linear but the state-equation is linear and

Gaussian. Except for the form of the non-linearities in the measurement equation, this setting

is identical to the application of importance sampling-based SML to stochastic volatility

models by Sandmann and Koopman (1998) and Brandt and Kang (2001).
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A Appendix

This appendix provides analytical expressions for the conditional mean m(zt−1) and variance
v(zt−1) of the discrete time factor dynamics (13) used in the Kalman filter recursions. The
results here are taken from Fisher and Gilles (1996) and Duffee (2001).

The continuous time factor dynamics are given by the affine diffusion (10). Assume that
the n× n the matrix of mean-reversion coefficients κ can be diagonalized as follows:

κ = MDM−1, (A.1)

where D is an n × n diagonal matrix with {d1, d2, . . . , dn} on the central diagonal.6 Define
the transformed factors:

z∗t = M−1zt, (A.2)

which, by Ito’s lemma, have the continuous time dynamics:

dz∗t = D(θ∗ − z∗t )dt + Σ∗S∗t dWt, (A.3)

where θ∗ = M−1θ, Σ∗ = M−1Σ, and S∗t is a diagonal matrix with ith diagonal element:

{S∗t }ii =
√

αi + β∗′i z∗t (A.4)

with β∗ = βM . The essential property of these transformed factors is that the drift of each
factor is only affected by its own level.

Define the following notation. If x is an n-vector, diag[x] is an n×n diagonal matrix with
elements {x1, x2, . . . , xn} on the central diagonal. If x is an n × n diagonal matrix, exp{x}
is also an n × n diagonal matrix with elements {exp{x1 1}, exp{x2 2}, . . . , exp{xn n}} on the
central diagonal. Finally, the vector x·i is the ith column of the matrix x.

The conditional mean of the transformed factors is simply:

E[z∗t |z∗s ] = θ∗ + exp{−D(t− s)}(z∗s − θ∗)

=
[
In×n − exp{−D(t− s)}]θ∗ + exp{−D(t− s)}z∗s ,

(A.5)

so that the conditional mean of the original factors is given by:

E[zt|zs] = M E[z∗t |z∗s ]
= M

[
In×n − exp{−D(t− s)}]θ∗ + M exp{−D(t− s)}M−1zs.

(A.6)

Deriving an expression for the conditional variance is somewhat more complicated. Write

6See Fisher and Gilles (1996) for the more general case when κ cannot be diagonalized.
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the instantaneous covariance matrix of the tranformed factors as:

Σ∗S∗t S
∗′
t Σ∗′ = Σ∗diag[α]Σ∗′ +

n∑
i=1

Σ∗diag[β∗·i]Σ
∗′z∗t i

≡ G0 +
n∑

i=1

Giz
∗
t i,

(A.7)

where G0 = Σ∗diag[α]Σ∗′, Gi = Σ∗diag[β∗·i]Σ
∗′, and then define the n× n matrix:

F (t, s) = G0 +
n∑

i=1

GiE[z∗t i|z∗s ]

= G0 +
n∑

i=1

Gi

[
θ∗i + exp{−di(t− s)}(z∗s i − θ∗i )

]
.

(A.8)

Fisher and Gilles (1996) shows that the conditional variance of the transformed factors can
then be written as:

Var[z∗t |z∗s ] =

∫ t

s

exp{−2D(t− τ)}F (t, τ)dτ

=

∫ t

s

exp{−2D(t− τ)}G0dτ +
n∑

i=1

θ∗i

∫ t

s

exp{−2D(t− τ)}Gidτ

+
n∑

i=1

[
(z∗s i − θ∗i )

∫ t

s

exp{−2D(t− τ)}Gi exp{−di(t− τ)}dτ

]
(A.9)

and

Cov[z∗t j, z
∗
t k|z∗s ] =

G0,j k

[
1− exp{−(t− s)(dj + dk)}

]

dj + dk

+

n∑
i=1

θ∗i Gi, j,k

[
1− exp{−(t− s)(dj + dk)}

]

dj + dk

+

n∑
i=1

(z∗s i − θ∗i )Gi,j k

[
exp{−di(t− s)} − exp{−(t− s)(dj + dk)}

]

dj + dk − di

.

(A.10)

Collecting terms, we have:

Var[z∗t |z∗s ] = b0 +
n∑

i=1

biz
∗
s i, (A.11)

so that the conditional variance of the original factors is given by:

Var[zt|zs] = M Var[z∗t |z∗s ]M ′

= Mb0M +
n∑

i=1

( n∑
j=1

MbjM
′M−1

jı

)
zs i.

(A.12)
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Frühwirth-Schnatter, S., and A.L.J. Geyer, 1998, Bayesian Estimation of Econometric Multi-
Factor Cox-Ingersoll-Ross Models of the Term Structure of Interest Rates Via MCMC
Methods, Working Paper, Vienna University of Economics and Business Administration.

Gibbons, M.R., and K. Ramaswamy, 1993, A Test of the Cox, Ingersoll, and Ross Model of
the Term Structure, Review of Financial Studies 6, 619–658.

23



Hamilton, J.D., 1994, Time Series Analysis, Princeton University Press: Princeton, NJ.

Harvey, A., 1989, Forecasting, Structural Time Series Models, and the Kalman Filter,
Cambridge University Press: New York, NY.

Heston, S.L., 1991, Testing Continuous-Time Models of the Term Structure of Interest Rates,
Working Paper, Yale University.

James, J., and N. Webber, 2001, Interest Rate Modeling, John Wiley & Sons: New York,
NY.

Jamshidian, F., 1989, An Exact Bond Option Formula, Journal of Finance 44, 205–209.

Jamshidian, F., 1991, Bond and Option Evaluation in the Gaussian Interest Rate Model and
Implementation, Research in Finance 9, 131–170.

Jamshidian, F., 1992, A Simple Class of Square-Root Interest Rate Models, Working Paper,
Fuji International.

Jegadeesh, N., and G. Pennacchi, 1996, The Behavior of Interest Rates Implied by the Term
Structure of Eurodollar Futures, Journal of Money, Credit, and Banking 28, 426–446.

Langetieg, T.C., 1980, A Multivariate Model of the Term Structure of Interest Rates, Journal
of Finance 35, 71–97.

Lund, J., 1997, Non-Linear Kalman Filtering Techniques for Term Structure Models,
Working Paper, Aarhus School of Business.

Litterman, R., and J.A. Scheinkman, 1991, Common Factors Affecting Bond Returns,
Journal of Fixed Income 1, 54–61.

Longstaff, F.A., and E.S. Schwartz, 1992, Interest Rate Volatility and the Term Structure:
A Two-Factor General Equilibrium Model, Journal of Finance 47, 1259–1283.

Marsh, T.A., and E. Rosenfeld, 1983, Stochastic Processes for Interest Rates and Equilibrium
Bond Prices, Journal of Finance 38, 635–646.

Nowman, K.B., 1997, Gaussian Estimation of Single-Factor Continuous Time Models of the
Term Structure of Interest Rates, Journal of Finance 52, 1695–1706.

Pearson, N.D., and T. Sun, 1994, Exploiting the Conditional Density in Estimating the Term
Structure: An Application to the Cox, Ingersoll, and Ross Model, Journal of Finance
49, 1279–1304.

Sandmann, G., and S.J. Koopman, 1998, Estimation of Stochastic Volatility Models Via
Monte Carlo Maximum Likelihood, Journal of Econometrics 87, 271–301.

Shephard, N., and M.K. Pitt, 1997, Likelihood Analysis of Non-Gaussian Measurement Time
Series, Biometrika 84, 653–667.

24



Singleton, K.J., 2001, Estimation of Affine Asset Pricing Models Using the Empirical
Characteristic Function, Journal of Econometrics 102, 111–141.

Stambaugh, R.F., 1988, The Information in Forward Rates: Implications for Models of the
Term Structure, Journal of Financial Economics 21, 41–70.

Vasicek, O., 1977, An Equilibrium Characterization of the Term Structure, Journal of
Financial Economics 5, 177–188.

White, H., 1982, Maximum Likelihood Estimation of Misspecified Models, Econometrica 50,
1–25.

25



Figure 1: Zero-Coupon Yields

Yields-to-maturity of zero-coupon libor bonds with three-months to ten-years to maturity.
Weekly data from April 1987 through December 1999 (666 observations).
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Table 1: Sampling Distribution of QML and SML Estimates

Means and standard deviations of SML estimates across 100 Monte Carlo simulations. The
true parameter values are κ = 0.8, θ = 0.03, Σ = 0.1, λ = −0.5, h = 0.005.

QML SML (L = 50) SML (L = 500) SMLE (L = 1000)
Params Mean StdDev Mean StdDev Mean StdDev Mean StdDev

κ 0.8341 0.1859 0.7919 0.0317 0.7909 0.0261 0.7943 0.0143
θ 0.0304 0.0070 0.0300 0.0013 0.0301 0.0012 0.0301 0.0007
Σ 0.0983 0.0067 0.1331 0.0140 0.1274 0.0127 0.1155 0.0113
λ -0.5313 0.1852 -0.5065 0.0310 -0.4993 0.0260 -0.5029 0.0138
h 0.00550 0.00008 0.00497 0.00009 0.00496 0.00008 0.00496 0.00007
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Table 2: Single-Factor CIR Model with Homogeneous Errors

QML and SML estimates of single-factor CIR model with homogeneous measurement errors
in Panel A. Means, standard deviations, and MSEs of corresponding yield pricing errrors in
Panel B. SML estimates are based on 500 simulations.

Panel A: Parameter Estimates

QML SML
Params Estimate t-Stat Estimate t-Stat

κ 0.4964 33.39 0.4907 28.75
θ 0.0202 10.05 0.0196 12.43
Σ 0.1226 6.91 0.1387 7.61
λ -0.4835 -42.14 -0.4563 -38.10
h 0.00424 4.93 0.00425 4.97

Log Likelihood 42384 42992

Panel B: Yield Errors

QML SML
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (× 10−4) (× 10−3) (× 10−5) (× 10−4) (× 10−3) (× 10−5)

3 8.2741 6.5074 4.3031 3.9931 6.3738 4.0785
6 11.0920 5.6446 3.3092 7.7432 5.5138 3.1002

12 9.9494 4.3836 2.0206 8.2235 4.2880 1.9063
24 -12.1735 2.2588 0.6584 -11.5483 2.1108 0.5789
36 -12.7002 1.0234 0.2660 -10.7491 1.0585 0.2276
48 -10.4110 1.6156 0.3694 -7.9317 1.7417 0.3663
60 -6.6199 2.5833 0.7112 -4.1883 2.6978 0.7454
72 -2.2090 3.2292 1.0477 -0.1962 3.3698 1.1356
84 -0.3525 3.9406 1.5529 1.0409 4.1209 1.6993
96 3.9509 4.2884 1.8546 4.6572 4.5108 2.0565

108 6.2805 4.6543 2.2057 6.3275 4.9216 2.4622
120 6.9144 5.0346 2.5826 6.3919 5.3441 2.8968
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Table 3: Single-Factor CIR Model with Heterogeneous Errors

QML and SML estimates of single-factor CIR model with heterogeneous measurement errors
in Panel A. Means, standard deviations, and MSEs of corresponding yield pricing errrors in
Panel B. SML estimates are based on 500 simulations.

Panel A: Parameter Estimates

QML SML
Params Estimate t-Stat Estimate t-Stat

κ 0.5955 38.36 0.5705 33.26
θ 0.0143 10.58 0.0175 12.08
Σ 0.1240 6.86 0.1412 6.86
λ -0.5618 -47.40 -0.5336 -42.20
a0 -10.8422 -29.87 -11.1532 -28.58
a1 -0.4915 -5.00 -0.1731 -1.94
a2 0.0572 4.58 0.0286 2.60

Log Likelihood 42869 43262

Panel B: Yield Errors

QML SML
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (× 10−4) (× 10−3) (× 10−5) (× 10−4) (× 10−3) (× 10−5)

3 10.0303 6.7171 4.6126 3.4890 5.7418 3.3089
6 12.9710 5.8266 3.5631 7.4725 4.8326 2.3912

12 12.0552 4.4976 2.1681 8.3804 3.5691 1.3440
24 -9.6845 2.2576 0.6035 -10.6833 1.5081 0.3416
36 -9.9177 0.7754 0.1585 -9.3453 1.2274 0.2380
48 -7.4130 1.3927 0.2489 -6.1280 2.2914 0.5626
60 -3.4722 2.4174 0.5964 -2.0887 3.2834 1.0824
72 1.0369 3.1016 0.9631 2.1246 3.9698 1.5805
84 2.9526 3.8417 1.4846 3.5331 4.7143 2.2350
96 7.2878 4.2057 1.8219 7.2900 5.0890 2.6429

108 9.6316 4.5863 2.1962 9.0836 5.4813 3.0870
120 10.2701 4.9798 2.5853 9.2631 5.8836 3.5475
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Table 4: Single-Factor CIR Model Forecasts

Means, standard deviations, and MSEs of one-week to one-quarter ahead forecasts of one- to
ten-year yields from QML and SML estimates of single-factor CIR model with heterogeneous
measurement errors.

QML: One-Week Forecast SML: One-Week Forecast
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (×10−4) (×10−3) (×10−5) (×10−4) (×10−3) (×10−5)

12 4.7084 4.5075 2.0539 2.6589 4.4065 1.9488
24 -16.9411 2.7474 1.0418 -16.2620 2.6330 0.9577
60 -10.2043 2.9205 0.9571 -7.0309 3.0496 0.9795

120 4.6970 5.2163 2.7430 5.4600 4.5624 3.1239

QML: One-Month Forecast SML: One-Month Forecast
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (×10−4) (×10−3) (×10−5) (×10−4) (×10−3) (×10−5)

12 -7.9381 5.2161 2.7838 -9.4852 5.1067 2.6978
24 -29.3404 4.0523 2.5029 -28.0002 3.9660 2.3569
60 -21.6894 3.8301 1.9374 -17.4110 3.9392 1.9549

120 -4.7512 5.6842 3.2536 -2.4661 6.0207 3.6310

QML: One-Quarter Forecast SML: One-Quarter Forecast
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (×10−4) (×10−3) (×10−5) (×10−4) (×10−3) (×10−5)

12 -38.9910 7.1252 6.5972 -39.1512 7.0286 6.4730
24 -59.6321 6.6506 7.9790 -56.5123 6.5978 7.5468
60 -49.8392 5.8230 5.8746 -42.6791 5.9013 5.3040

120 -27.8595 6.7739 5.3647 -21.6730 7.0778 5.4793
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Table 5: Two-Factor CIR Model with Heterogeneous Errors

QML and SML estimates of two-factor CIR model with heterogeneous measurement errors
in Panel A. Means, standard deviations, and MSEs of corresponding yield pricing errrors in
Panel B. SML estimates are based on 500 simulations.

Panel A: Parameter Estimates

QML SML
Params Estimate t-Stat Estimate t-Stat

κ1 0.2456 14.13 0.1538 10.70
θ1 0.0085 8.24 0.0175 10.50
Σ1 0.0648 4.25 0.0734 4.82
λ1 -0.2275 -23.09 -0.1326 -11.25
κ2 0.7976 8.83 0.5709 8.45
θ2 0.0289 2.97 0.0380 2.20
Σ2 0.1911 6.99 0.1874 6.21
λ2 -0.3092 -10.97 -0.2808 -9.98
a0 -13.3951 -35.22 -13.4132 -45.82
a1 -0.2405 -3.05 -0.1016 -3.02
a2 0.0223 1.32 0.0089 1.10

Log Likelihood 52996 53317

Panel B: Yield Errors

QML SML
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (× 10−4) (× 10−3) (× 10−5) (× 10−4) (× 10−3) (× 10−5)

3 -4.3561 2.2929 0.5447 -2.8280 2.2819 0.5287
6 3.2325 1.2419 0.1647 4.1716 1.2148 0.1649

12 9.2688 1.0234 0.1906 9.2833 0.9525 0.1769
24 -5.4229 1.4946 0.2528 -6.4644 1.3864 0.2340
36 -4.2570 1.2391 0.1716 -5.6248 1.1025 0.1532
48 -3.2562 0.9518 0.1012 -4.4996 0.8079 0.0855
60 -2.0720 0.7777 0.0647 -2.9243 0.6584 0.0519
72 -0.6116 0.5200 0.0274 -0.9250 0.4159 0.0181
84 -1.5093 0.3538 0.0148 -1.2127 0.3880 0.0165
96 0.5041 0.2695 0.0075 1.4345 0.4172 0.0194

108 1.1098 0.3402 0.0128 2.6687 0.5663 0.0392
120 0.5894 0.5398 0.0295 2.7547 0.7963 0.0710
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Table 6: Two-Factor CIR Model Forecasts

Means, standard deviations, and MSEs of one-week to one-quarter ahead forecasts of one- to
ten-year yields from QML and SML estimates of two-factor CIR model with heterogeneous
measurement errors.

QML: One-Week Forecast SML: One-Week Forecast
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (×10−4) (×10−3) (×10−5) (×10−4) (×10−3) (×10−5)

12 8.6117 1.7558 0.3824 10.002 1.7140 0.3938
24 -6.1233 2.3088 0.5706 -5.9462 2.2194 0.5279
60 -2.7669 1.6390 0.2763 -2.6817 1.5633 0.2516

120 -0.0335 1.4193 0.2014 2.8641 1.5005 0.2334

QML: One-Month Forecast SML: One-Month Forecast
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (×10−4) (×10−3) (×10−5) (×10−4) (×10−3) (×10−5)

12 6.9206 3.3713 1.1845 12.3732 3.3417 1.2698
24 -7.8159 3.8197 1.5201 -4.0389 3.7517 1.4238
60 -4.4716 2.9947 0.9168 -1.6118 2.9576 0.8774

120 -1.5694 2.6918 0.7270 3.4980 2.7186 0.7513

QML: One-Quarter Forecast SML: One-Quarter Forecast
Maturity Mean StdDev MSE Mean StdDev MSE
(Months) (×10−4) (×10−3) (×10−5) (×10−4) (×10−3) (×10−5)

12 3.3046 6.1880 3.8401 19.1201 6.1172 4.1075
24 -11.2950 6.6153 4.5038 1.6969 6.5519 4.2956
60 -8.1219 5.4704 3.0585 1.8691 5.4938 3.0216

120 -4.8582 4.7860 2.3142 5.8087 4.8177 2.3547
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