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ABSTRACT

Monte Carlo simulation is a popular method for pricing
financial options and other derivative securities because of
the availability of powerful workstations and recent ad-
vances in applying the tool. The existence of easy-to-use
software makes simulation accessible to many users who
would otherwise avoid programming the algorithms nec-
essary to value derivative securities. This paper presents
examples of option pricing and variance reduction, and
demonstrates their implementation with Crystal Ball 2000,
a spreadsheet simulation add-in program.

1 INTRODUCTION

A financialoptionis a security that grants its owner the right,
but not the obligation, to trade another financial security
at specified times in the future for an agreed amount. The
financial security that can be traded in the future is called
the underlying asset, or simply theunderlying. An option
is an example of aderivativesecurity, so named because its
value is derived from that of the underlying. The problem
of placing a value on an option is made difficult by the
assymetric payoff that arises from the option holder’s right
to trade the underlying in the future if doing so is favorable,
but to avoid trading when doing so is unfavorable.

In a modern economy, it is important for firms and
households to be able to select an appropriate level of risk
in their transactions. This takes place on financial markets,
which redistribute risks toward those agents who are willing
and able to assume them. Markets for options and other
derivatives are essential because agents who anticipate future
revenues or payments can ensure a profit above a certain
level or insure themselves against a loss above a certain
level.

Options allow for hedging against one-sided risk. How-
ever, a prerequisite for efficient management of risk is that
these derivative securities are priced correctly when they
are traded. Nobel laureates Fischer Black, Robert Merton,
and Myron Scholes developed in the early 1970s a method
to price specific types of options exactly, but their method

does not produce exact prices for all types of options. In
practice, numerical methods such as simulation are often
used to price derivative securities. Simulation is also used
for estimating sensitivities, risk analysis, and stress testing
portfolios.

The use of Monte Carlo simulation in pricing options
was first published by Boyle (1977), but recently the liter-
ature in this area has grown rapidly. For example, see the
work by Ameur et al. (1999), Boyle et al. (1995 and 1997)
Broadie and Glasserman (1996), Caflisch et al. (1997), Fu
(1995), Fu and Hu (1995), Fu et al. (1999), Glasserman and
Zhao (1999), Grant et al. (1997), Joy et al. (1996), Lemieux
and L’Ecuyer (1998), Morokoff (1998), and Vázquez-Abad
and Dufresne (1998). This paper describes some of this
past work and related Excel files demonstrate how the
ideas can be implemented using a spreadsheet simulation
add-in package (Crystal Ball 2000). The Excel Files are
located on the website<www2.bschool.ukans.edu/
jcharnes/options/wsc00> .

2 BACKGROUND

The price of the underlying is denoted bySt , for 0≤ t ≤ T ,
whereT is the expiration date of the option. The agreed
amount for which the underlying is traded is called thestrike
price, which is denoted byK. There are many different
types of options. Some basic types are listed in the next
section.

2.1 Types of options

Call. A call option gives its owner the right topurchase
the underlying for the strike price on the expiration
date. The payoff for a call option with strike price
K when it is exercised on datet is (St −K)+,
where(X)+ ≡ max(X, 0).

Put. A put option gives its owner the right tosell the
underlying for the strike price on the expiration
date. The payoff for a put option with strike price
K when it is exercised on datet is (K − St )+.
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European. A European option allows the owner to ex-
ercise itonly at the termination date, T . Thus, the
owner cannot influence the future cash flows from
a Euroepan option with any decision made after
purchase.

American. An American option allows the owner to
exerciseat any time on or before the termination
date, T . Thus, the owner of an American call
(put) option can influence the future cash flows
with a decision made after purchase by exercising
the option when the price of the underlying is high
(low) enough to compel the owner to do so.

Exotic. The payoffs for exotic options depend on more
than just the price of the underlying at exercise.
Examples of exotics are Asian options, which pay
the difference between strike and the average price
of the underlying over a specified period; Up-and-in
Barrier options, which pay the difference between
strike and spot prices at exercise only if the price
of the underlying has exceeded some prespecified
barrier level; and Down-and-out Barrier options,
which pay the difference between strike and spot
at exercise only if the price of the underlying has
not gone below some prespecified barrier level

New types of options appear frequently. Because they
are designed to cover individual circumstances, analytic
methods to price new derivative securities are not always
available when the securities are developed. However, it
is possible to obtain good estimates of the value of most
any type of option using simulation and the concept of
risk-neutral pricing.

2.2 Risk-neutral pricing

Arbitrage is the purchase of securities on one market for
immediate resale on another in order to profit from a price
discrepancy. In an efficient market, arbitrage opportunities
cannot last for long. As arbitrageurs buy securities in the
market with the lower price, the forces of supply and demand
cause the price to rise in that market. Similarly, when the
arbitrageurs sell the securities in the market with the higher
price, the forces of supply and demand cause the price to
fall in that market. The combination of the profit motive
and nearly instantaneous trading ensures that prices in the
two markets will converge quickly if arbitrage opportunities
exist.

Using the assumption of no arbitrage, financial
economists have shown that the price of a derivative secu-
rity can be found as the expected value of its discounted
payouts when the expected value is taken with respect to a
transformation of the original probability measure called the
equivalent martingalemeasure or therisk-neutralmeasure.

See Duffie (1996), Hull (1997), and Wilmott (1998) for
more about risk-neutral pricing.

2.3 Black-Scholes model

The price of a fairly valued European put option is the
expected present value of the payoffE

[
e−rT (K − ST )+

]
,

where the expectation is taken under the risk-neutral mea-
sure. To compute this expectation, Black and Scholes (1973)
modeled the stochastic process generating the price of a non-
dividend-paying stock as geometric Brownian motion:

dSt = µStdt + σStdWt ,

wheredW(t) represents a Wiener process.
The Black-Scholes price for a European Call option on

a non-dividend-paying stock trading at timet is:

Ct(St , T − t) = StN(d1)−Ke−r(T−t)N(d2), (1)

where

d1 = log(St/K)+
(
r + 1

2σ
2
)
(T − t)

σ
√
T − t , (2)

d2 = log(S/K)+ (r − 1
2σ

2
)
(T − t)

σ
√
T − t = d1− σ

√
T − t,

(3)
N(di) is the cumulative distribution value for a standard
normal random variable with valuedi , K is the strike price,
r is the risk-free rate of interest, andT is the time of
expiration.

The Black-Scholes solution for a European Put option
on a non-dividend-paying stock trading at timet is:

Pt(St , T − t) = −StN(−d1)+Ke−r(T−t)N(−d2), (4)

whered1 andd2 are given by expressions (2) and (3) above.
Note that the variables appearing in the Black-Scholes

equations are the current stock price, time, stock price
volatility, and the risk-free rate of interest, all of which
are independent of individual risk preferences. This allows
for the assumption that all investors are risk neutral, which
leads to the solutions above. However, these solutions are
valid in all worlds, not just those where investors are risk
neutral.

2.4 Using Monte Carlo simulation
for determining option prices

In the Black-Scholes world-view, a fair value for an option
is the present value of the option payoff at expiration under
a risk-neutral random walk for the underlying asset prices.
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Therefore the general approach to using simulation to find
the price of the option is straightforward:

1. Using the risk-free measure, simulate sample paths
of the underlying state variables (e.g., underlying
asset prices and interest rates) over the relevant
time horizon;

2. Evaluate the discounted cash flows of a security on
each sample path, as determined by the structure
of the security in question; and

3. Average the discounted cash flows over sample
paths.

In effect, this method computes an estimate of a multi-
dimensional integral—the expected value of the discounted
payouts over the space of sample paths. The increase in
complexity of derivative securities has led to a need to eval-
uate high-dimensional integrals. Monte Carlo simulation
is attractive relative to other numerical techniques because
it is flexible, easy to implement and modify, and the error
convergence rate is independent of the dimension of the
problem.

To simulate stock prices using the Black-Scholes model,
generate independent replications of the stock price at time
t +1t from the formula

S
(i)
t+1t = St exp

(
(r − σ 2/2)1t + σ√1tZ(i)

)
, (5)

for i = 1, . . . , n,whereSt is the stock price at timet , r is
the riskless interest rate,σ is the stock’s volatility, andZ(i)

is a standard normal random variate.
The Excel filesEuroCall.xls andEuroPut.xls

contain simulation models for pricing European call and
put options on a stock with current priceS0 = $100, strike
priceK = $100, and annual volatilityσ = 40%, in a world
with risk-free rater = 10%. Of course, these are securities
for which the Black-Scholes formulas (1) and (4) provide
an exact answer, so there is no need to use simulation to
price them. However, European options serve the same
purpose in financial simulation as theM/M/1 model does
in queueing simulation—since we know the exact solution,
it becomes possible to check the accuracy of our simulation
results. In the Excel fileEuroCall.xls , the European
call price estimated by simulation with 10,000 iterations is
$8.12 (with standard error 0.12), while the Black-Scholes
price is $8.09. InEuroPut.xls , the European put price
estimated by simulation with 10,000 iterations is $6.11
(0.09), while the Black-Scholes price is $6.11.

The increased availability of powerful computers and
easy-to-use software has enhanced the appeal of simulation
to price derivatives. The main drawback of Monte Carlo
simulation is that a large number of replications may be
required to obtain precise results. However, variance re-

duction techniques can be applied to sharpen the inferences
and reduce the number of replications required.

3 VARIANCE REDUCTION TECHNIQUES

3.1 Antithetic variates

The method of antithetic variates for pricing options is based
on the fact that ifZ(i) has a standard normal distribution,
then so does−Z(i). Therefore, if we replaceZ(i) in (5)
with −Z(i), we also get a valid sample from the distribution
of stock prices at timeT . In using antithetic variates, we
construct two intermediate estimates,θ1(Z

(i)) andθ2(Z(i)),
then a final estimate,θAV = (θ1+ θ2)/2.

In the Excel fileEuroCallAV.xls the standard error
of the estimate of the call price is 0.06, compared to the
value 0.12 obtained from the same number of runs specified
in §2.4. In EuroPutAV.xls the standard error of the
estimate of the put price is 0.04, compared to the value 0.09
obtained from the same number of runs specified in §2.4.

3.2 Control variates

The method of control variates replaces the evaluation of an
unknown expectation with the evaluation of the difference
between the unknown quantity and a related quantity whose
expectation is known. Kemna and Vorst (1990) use control
variates to value Asian options. The unknown quantity of
interest is the price,Ca , of a call option whose payoff at
expiration is(A−K)+, whereA is the arithmetic average
of the underlying during the holding period. The related
quantity with known expectation is the price,Cg, of an
option whose payoff is(G−K)+, whereG is the geometric
average. Because of the lognormality of the stock price
model, an analytic expression is available forCg, but not
for Ca .

The prices are defined asCa = E
[
Ĉa

]
, and Cg =

E
[
Ĉg

]
, whereĈa andĈg are the discounted option payoffs

for a single simulated path of the underlying for options that
pay off on the arithmetic and geometric means, respectively.
Then

Ca = Cg + E
[
Ĉa − Ĉg

]
,

and an unbiased estimator ofCa is given by

ĈCVa = Ĉa + (Cg − Ĉg).

UsingCg as a control variate reduces the estimation error
because it “steers” the estimate toward the correct value. See
the fileAsianCallCV.xls , in which the standard error of
the estimated price is reduced from 0.0862 without variance
reduction applied to 0.0076 when the geometric average is
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used as a control variate. The use of control variates is
well known in simulation, and there are refinements to this
technique that can improve the results somewhat (see Boyle
et al. 1997).

3.3 Moment Matching

The method of moment matching was introduced by Bar-
raquand and Martineau (1995). LetZ(i), i = 1, . . . , n
denote the standard normal variates used to drive the sim-
ulation. Transform these so that the first sample moment
matches the first population moment:

Z′(i) = Z(i) − Z̄,

whereZ̄ =∑n
i=1Z

(i)/n. Then useZ′(i) to generate each

terminal stock priceS′(i)T . The first-moment-matched es-
timator of the call option price is the average of then
values

e−rT
(
S
′(i)
T −K

)+
.

To match the first two moments, generate each terminal
stock priceS′(i)T using the transformation

Z′(i) =
(
Z(i) − Z̄

) σZ
SZ
,

whereSZ is the sample standard deviation of the generated
valuesZ(i).

Boyle et al. (1997) take this idea a step further by
matching the first two moments of the terminal stock prices
as

S
′(i)
T =

(
S
(i)
T − ST

) σST
SST
+ µST , (6)

whereµST = S0e
rT , ST =∑n

i=1 ST /n,

σST = S0

√
e2rT (eσ

2T − 1),

and

SST =
n∑
i=1

(
S
′(i)
T − ST

)
/(n− 1).

The file EuroCallMM.xls demonstrates the reduc-
tion in variance obtained through moment matching using
(6). Because the random inputs are not independent, this
file estimates the standard error by using batches of 100
runs of the simulation. The estimated standard error is the
standard deviation of the output distribution. In this file,
the standard error without variance reduction is 1.23, while
the standard error with moment matching is 0.22. Boyle

et al. (1997) show even greater reductions for some inputs
that they consider, but also show that whenever a moment
is known, it is better to use it as a control variate than for
moment matching.

3.4 Latin hypercube sampling

Latin hypercube sampling (LHS) is a restructuring of the
simulation method in an attempt to improve the efficiency
of the estimation procedure by reducing the estimation error
for a fixed computing budget. In LHS, the components of
the random-number input vectorU(i)LHS ≡ (U(i)1 , . . . , U

(i)
d )

are generated according to the relation (see Avramidis and
Wilson 1995):

U
(i)
j =

πj (i)− 1+ U?ij
k

for

{
i = 1, . . . , k,
j = 1, . . . , d,

where theπ1(·), . . . , πd(·) are permutations of the integers
{1, . . . , k} that are randomly sampled with replacement from
the set ofk! such permutations, withπj (i) denoting the
ith element in thej th randomly sampled permutation; and
{U?ij : j = 1, . . . , d; i = 1, . . . , k} are random numbers
computed independently of each other and of the permuta-
tions π1(·), . . . , πd(·).

Introduced by McKay et al. (1979), Latin hypercube
sampling has been studied by Stein (1987), Owen (1998),
and Avramidis and Wilson (1995). Avramidis and Wilson
(1996) show that LHS estimates have mean square errors
of less than 40% of Monte Carlo estimates of the median
response for stochastic activity networks.

The file EuroCallLHS.xls contains a comparison
of LHS and Monte Carlo for pricing a European call option.

3.5 Importance sampling

Importance sampling is often used to make rare events less
rare. For example, consider a down-and-in barrier call option
that is far from the barrier. This call option hasS0 = 95,
σ = .15, r = .05, K = 90, and barrierH = 85, with
payoff (ST −K)+ only if St < H for some timet between
0 andT . This option will pay off at timeT infrequently,
because to be in the money the stock price must fall below
the barrier, then rise above the strike price during the period
0 toT . The time to expiration isT = .25, and the barrier is
monitored at discrete timesn1t , n = 0,1, . . . , m = 50, with
1t = T/m. Following Boyle et al. (1997), set the barrier
H = S0e

−b and the strike atK = S0e
−c, with b, c > 0.

A down-and-in call paysST − K at time T if ST > K

andSn1t < H for somen = 1,2, . . . , m. Write the price
of the underlying at monitoring instants asSn1t = S0e

Un ,
whereUn =∑n

i=1Xi with theXi i.i.d. normal having mean
(r − 1

2σ
2)1t and standard deviationσ

√
1t . Let τ be the

first time thatUn drops below−b. Then the probability of
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a payout isP(τ < m,Um > c). If b andC are large, this
probability is small, and most simulation runs return zero.
Importance sampling can increase this probability and get
more information from each run.

With no variance reduction, the price of the down-and-
in call is e−rT Er

[
1{τ<m}(ST −K)+

]
. With importance

sampling, the price ise−rT Eµ
[
L1{τ<m}(ST −K)+

]
, where

L = exp(−(θ1− θ2)Uτ − θ2Um +mψ(θ2)) ,
θi = (µi − r + σ 2/2)/σ 2 for i = 1,2,

ψ(θ) = (r − σ 2/2)1tθ + σ 2/21tθ2,

µ1 = −(2b + c)/T , andµ2 = (2b + c)/T .
The intuition behind this estimator is that the driftµ1 is

set to a negative value to drive the asset price to the barrier,
then the driftµ2 is set to a positive value to drive the asset
above the strike price. Importance sampling has its greatest
advantages when the current price of the underlying is far
from the barrier. The fileBarrierCallIS.xls shows
the standard error to be reduced by an order of magnitude
for a Down-and-In call option on a stock currently trading
at $95, with barrierH = $85, and strike priceK = $90.

3.6 Conditional Monte Carlo

This technique reduces variance because it does part of the
integration analytically, which leaves less to be done by
Monte Carlo. Conditional Monte Carlo is used by Hull and
White (1987) to price options with stochastic volatilities.
Their model has an asset price and its variability evolving
as

dSt = rSt dt + vSt dW1t , and

dv2
t = αv2

t dt + ξv2
t dW2t ,

wheredW1t and dW2t represent independent Wiener pro-
cesses.

To price a standard European call on this asset using
Monte Carlo, simulate sample paths ofv2

t andSt up to time
T and average(ST −K)+ over all paths. To price the call
with conditional Monte Carlo, note that the asset priceSt
may be treated as having a time varying but deterministic
volatility equal to the average squared volatility over the
path. Thus, conditional on the volatility path, the option
can be priced by the Black-Scholes formula

e−rT E
[
(ST −K)+|vt ,0 ≤ t ≤ T

]
.

This expression is evaluated as (1) withV replacingσ 2,
whereV is the average squared volatility over the path.

The file EuroCallCMC demonstrates the use of con-
ditional Monte Carlo. In it, the estimated price and stan-
dard error for straightforward Monte Carlo are 0.0303 and

0.0014, respectively, while the estimated price and standard
error for conditional Monte Carlo are 0.0295 and 0.0001,
respectively.

3.7 Quasi-Monte Carlo Simulation

The pseudo-random numbers used in Monte Carlo simula-
tion are generated to fill the interval[0,1) in a sequence
that passes statistical tests of randomness.Quasi-random
numbers are generated so that the interval[0,1) is filled
in a more uniform sequence than it is by pseudo-random
number generators. Such sequences are also known aslow–
discrepancysequences (See Niederreiter 1988, and Nieder-
reiter and Spanier 1998 for more about low-discrepancy
sequences).

Quasi-Monte Carlo simulation is used to price options
in a manner similar to Monte Carlo simulation, except
that quasi-random numbers are used instead of pseudo-
random numbers. Quasi-Monte Carlo simulation shows
great promise for option pricing, but presents a problem in
that elementary statistical theory cannot be used to compute
error bounds as is done in Monte Carlo simulation. The
file EuroCallQMC.xls demonstrates the use of quasi-
random numbers and compares results to Monte Carlo using
pseudo-random numbers.

4 PRICING AMERICAN OPTIONS

An American put option grants its holder the right, but
not the obligation, to sell shares of a common stock for
the exercise price,X, at or before timeT . The Black-
Scholes expressions (1) and (4) yield approximations for
the values of an American call and put option, but in
practice numerical techniques are used to obtain closer
approximations of options that can be exercised at times in
addition to timeT .

The fair value of an American put option is the dis-
counted expected value of its future cash flows. The cash
flows arise because the put can be exercised at the next
instant,dt , or the following instant, 2dt , if not previously
exercised, …,ad infinitum. In practice, American options
are approximated by securities that can be exercised at only
a finite number of opportunities,k, before expiration at time
T . These types of financial instrument are calledBermudan
options. By choosingk large enough, the computed value
of a Bermudan option will be practically equal to the value
of an American option.

Geske and Johnson (1984) develop a numerical ap-
proximation for the value of an American option based on
extrapolating values for Bermudan options having small
numbers (1, 2, and 3) of exercise opportunities. Their
results are exact in the limit as the number of exercise op-
portunities goes to infinity. Broadie and Glasserman (1997)
use simulation to price American options by generating
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two estimators, one biased high and one biased low, both
asymptotically unbiased and converging to the true price.
Avramidis and Hyden (1999) discuss ways to improve the
Broadie and Glasserman estimates. Longstaff and Schwartz
(1998) provide an alternate method for pricing American
options.

The early exercise feature of American options makes
their valuation more difficult because the optimal exercise
policy must be estimated as part of the valuation. Thisfree–
boundaryaspect leads some to conclude that Monte Carlo
simulation is not suitable for valuing American options (e.g.,
Hull 1997). However, research in this area is continuing.

The file BermuPutAV.xls contains an example of
valuing an Bermudan put option with initial stock price
S0 = 100, risk-free rater = 0.05, dividend yieldδ = 0.10,
time to expirationT = 1.0, volatility σ = 0.2, strike price
K = 100, and two early-exercise opportunities at timesT/3
and 2T/3. From Broadie and Glasserman (1997), the true
value of this option is 5.726.

The spreadsheet illustrates a method to price this option
using simulation and an optimization approach due to Glover
(1977 and 1997). This method uses tabu search to identify
an optimal policy, then a final set of iterations to estimate
the value of the option under the identified policy. The
estimated price for the option described above is 5.7264
with standard error 0.0102.

5 CONCLUSION

Interest in use of Monte Carlo methods for option pricing
is increasing because of the flexibility of the method in
handling complex financial instruments. Further, the use
of variance reduction techniques along with the greater
power of today’s workstations has reduced the execution
time required for achieving acceptable precision. Monte
Carlo simulation will continue to gain appeal as financial
instruments become more complex, workstations become
faster, and simulation software is adopted by more users.
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