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Abstract: The valuation of American Options can often be reduced to the study of a free
boundary value problem for a partial differential equation. This paper will discuss how
the Method of Lines (MOL) can be used to study the numerical valuation of American
Options and to determine the early exercise frontier. This method is flexible, accurate and
computationally fast.

§1. Introduction

As no analytic solution exists for the free boundary problem describing the pricing of
American puts and calls on (dividend paying) stock, various numerical procedures have
been proposed in the literature. For a recent discussion and comparison of some of these
methods for the Black-Scholes options model see [1], [2].

As observed in these papers, the challenge is to find a method that is both accurate
and fast. Both papers note substantial differences in accuracy and computing efficiency
between the various methods. A numerical method of long standing for general parabolic
free boundary problems is the discrete time method of lines (MOL) approximation and the
resulting sequence of free boundary problems for ordinary differential equations with the
method of invariant imbedding. This method has been applied over the years to a number
of one- and multi-dimensional free boundary problems arising in science and engineering.
Its applicability to optimal stopping problems was suggested by one of the authors in [3].
Its advantages for American Puts and Calls were demonstrated in [2] where it is shown that
this approach is quite accurate and that it can be implemented to execute on workstations
and mainframes as fast as alternative methods with which it was compared.

A similar observation is made in [1] for the analytic method of lines (AMOL) where
the solution of time discrete free boundary problems obtained from the MOL is carried
out essentially analytically by exploiting the specific Cauchy-Euler structure of equations
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that arise when the underlying stock price follows the Black-Scholes model.

The present paper does not compare numerical methods. We believe that the results
of [1] and [2] show that the two MOL approximation provide competitive efficient numer-
ical methods for American option problems. However, as a fully numerical method, the
invariant imbedding approach is not tied to the specific boundary problem that arises in
the context of the Black-Scholes model for stock prices, but can be used for equations with
time and solution dependent coefficients and boundary conditions as are common in phys-
ical science models ([3]). Moreover, trivial modifications make the method formally second
order in time. On the other hand, due to the singularity of the solution and the infinite
interval there are some technical complications in applying this numerical method. The
extensive calculations of [2], primarily for calls but also some puts, are not accompanied
by much detail of the actual choice of computational parameters and on how to treat the
difficulties due to vanishing coefficients or infinite intervals. Therefore, our discussion will
again examine the MOL algorithm with invariant imbedding but will concentrate on the
computational issues which need to be resolved.

We shall deal here primarily with American Puts which we consider to be the more
challenging problem for an efficient numerical solution because the interval of computa-
tion is infinite. The efficiency of any numerical method will depend greatly on how this
singularity is treated.

§2. The Model

We will assume the standard model of perfect securities markets (no taxes, restrictions
on short sales, transaction costs ...) as described for example in [4], which we repeat here
for completeness. The financial market consists of three assets defined on a complete,
filtered probability space (Ω,F , {Ft}, Q) and on a finite time set [0, T ]. The probability
space supports Brownian motion and the filtration will be taken to be the canonical one
augmented with the Q-null sets of F .

The savings account, or bond, has its price process subject to variable, but certain,
growth on the interval [0, T ] :

dB(t) = r(t)B(t)dt (2.1)

where r(t) ≥ 0 is the interest rate at time t. We restrict ourselves to bounded interest
rates and choose the initialization B(0) = 1.

Define continuous functions µ : IR+ × [0, T ] → IR, ρ : [0, T ] → IR+ ∪ {0}, Σ : IR+ ×
[0, T ] → IR+. The price process of the stock, or risky asset, is modelled as the diffusion
process:

dS(t) = [µ(S(t), t)− ρ(t)]S(t)dt+ Σ(S(t), t)dW (t) (2.2)

with appreciation rate µ; dividend rate ρ; volatility Σ; and whereW is a standard Brownian
motion on the probability space.

For the third security, we define a reward function ψ to be a continuous, non-negative

2



function on IR+ × [0, T ]. An American option on the stock with reward ψ is a financial
asset which pays the stochastic reward ψ(S(t), t) when exercised at time t ∈ [0, T ]. The
American Put has ψ(s, t) = (κ − s)+ = maximum (κ − s, 0), and the American Call has
ψ(s, t) = (s−κ)+, where κ ∈ IR+ is referred to as the strike price of the option. This paper
will concentrate on these examples so that comparisons can be made with other works.
However it may be noted that our method adapts easily to the case where the strike price
and the interest rate are functions of time.

The valuation of an American option on the stock with reward ψ and expiration time
T can be expressed as V (S, 0) where S(0) = S and V (s, t) is the solution of the following
free boundary problem, in the case of the American put ([7],[8],[9]): For all t > 0, there
exists a unique s∗(t) so that

LV (s, t) = 0 if s > s∗(t), t ∈ [0, T ) (2.3)

V (s, t)→ (κ− s)+ as t→ T (2.4)

V (s, t)→ 0 as s→∞, t ∈ [0, T ) (2.5)

V (s, t) > (κ− s)+ if s > s∗(t), t ∈ [0, T ) (2.6)

V (s, t)→ (κ− s∗(t)) as s→ s∗(t)+, t ∈ [0, T ) (2.7)

∂V

∂s
(s, t)→ −1 as s→ s∗(t)+, t ∈ [0, T ) (2.8)

where

LV (s, t)
def
=

1

2
Σ(s, t)2 ∂

2V

∂s2
(s, t) + [r(t)− ρ(t)]s ∂V (s, t)

∂s
− r(t)V (s, t) +

∂V (s, t)

∂t
. (2.9)

The curve s = s∗(t), the free boundary, is the early exercise frontier which must be deter-
mined simultaneously with V (s, t).

As in [1] we shall study the normalized American put obtained by setting

u = V/κ, x = s/κ. (2.10)

In addition, it will be convenient to introduce the new time variable

τ = T − t.

Then we get the free boundary problem

σ(x, τ)uxx + b(x, τ)ux − r(x, τ)u− uτ = 0 (2.11)

when x > s(τ) and 0 < τ ≤ T , together with

u(s(τ)+, τ) = 1− s(τ), 0 < τ ≤ T (2.12)

ux(s(τ)+, τ) = −1, 0 < τ ≤ T (2.13)
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u(x, τ)→ 0 as x→∞, 0 < τ ≤ T (2.14)

u(x, 0) = 0 for x ≥ 1 = s(0) (2.15)

The Black-Scholes model is obtained when σ(x, τ) = 1
2
σ2x2, b(x, τ) = bx = (r − ρ)x,

r(x, τ) = r where σ, r and ρ are constant. (2.11) becomes

1

2
σ2x2uxx + (r − ρ)xux − ru− uτ = 0 (2.16)

Its solution will be denoted by u(x, τ, r, ρ). The specific form of the coefficients of (2.16)
allows its transformation to the standard heat equation which has been studied at great
length (see for example [19]). In particular, it is known that the solution of (2.16) satisfies
the integral equation

u(x, τ) = e(x, τ) +
∫ τ

0
[re−rzφ(h2(τ, z))− (r − b)e−(r−b)zxφ(h1(τ, z))]dz (2.17)

where

h1(τ, z) =

[
ln

x

s(τ − z) +

(
b+

σ2

2

)
z

] /
σ
√
z

and
h2(τ, z) = h1(τ, z)− σ

√
z .

Here e(x, τ) is the value of the corresponding European Put option which is given explicitly
by the formula

e(x, τ) = e−rτφ(d− σ√τ)− xe−(r−b)τφ(d)

where

d =

[
lnx+

(
b+

σ2

2

)
τ

] /
σ
√
τ

and

φ(z) =
1√
2π

∫ ∞

z
e−y2/2 dy.

If the integral equation (2.17) is evaluated at x = s(τ), where u(s(τ), τ) = 1− s(τ), then
a convolution integral equation for the free boundary s(τ) results. Conversely, if the free
boundary s(τ) is known then the value of the option for any price is readily computed.
The initial condition shows that ux is discontinuous at x = 1 and τ = 0. It follows that the
solution has a singularity there. We remark that it is shown in [11],[12] that this singularity
leads to an asymptotic movement of the free boundary given by

SB(∆τ) ∼= 1−
√

∆τ | ln ∆τ | as ∆τ → 0

while in [1] the formula

SC(∆τ) ∼=
(
r
√

∆τ

σ
√

2

)σ
√

∆τ/2

as ∆τ → 0
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is derived for the AMOL approximation at the first time step. These two expressions are
not equivalent since

lim
∆τ→0

1− SC(∆τ)

1− SB(∆τ)
=∞

Finally we note that the steady state solution of (2.11)-(2.16) is readily computed to be

u∞(x) = (1− s∞)
(
x

s∞

)γ

(2.18)

where s∞ = γ
γ−1

and

γ =
−(b− σ2/2)−

√
(b− σ2/2)2 + 2rσ2

σ2
(2.19)

The numerical method should reproduce this solution as τ →∞.

§3. Solution Algorithm

One common method of eliminating an infinite interval is to map it to a finite inter-
val. For example, it is known (see [1]) that the value u(x, τ, r, ρ) of the American Put
described by (2.16) is related to the solution v(x, τ, ρ, r) of the American Call through the
transformation

v(x, τ, ρ, r) = xu(1/x, τ, r, ρ)

Thus the solution (2.16) can be obtained by solving a similar free boundary problem on
the finite interval [0, s̄(τ)] for v(x, τ, ρ, r) subject to

v(0, τ) = 0

v(s̄(τ)−, τ) = s̄(τ)− 1

vx(s̄(τ)−, τ) = 1

v(x, 0) = 0 on [0, s̄(0) = 1]

and s̄(τ) = 1/s(τ). As shown in [2] and briefly discussed below, the MOL algorithm
advocated here is well suited for such problems.

In general, however, it is simpler to work with the original problem on a finite interval
[s(τ), X]. This eliminates the need for actually transforming the equations which, for the
general model (2.11) would fail to have a transparent interpretation. Thus, for the time
being let us suppose that the infinite interval [s(τ),∞) has been truncated to [s(τ), X] and
that the boundary condition (2.14) is replaced by the numerical boundary condition

u(X, τ) = h(τ) (3.1)

The choice of X and h(τ) remains to be discussed. Then we have a standard free boundary
problem to which the algorithm of [3], [2] applies. In short, the time derivative in (2.11) at
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time level τn is replaced by a difference quotient. If a first order approximation is chosen
then the partial differential equation becomes

σ(x, τn)u′′ + b(x, τn)u′ − r(x, τn)u− u− un−1

∆τ
= 0 (3.2)

where u ≡ un is the approximation to u(x, τn). If a second order backward approximation
is used then we have

σ(x, τn)u′′ + b(x, τn)u′ − r(x, τn)u− 3

2∆τ
(u− un−1) +

1

2∆τ
(un−1 − un−2) = 0 (3.3)

Either equation is a method of lines approximation to (2.11) which replaces the time depen-
dent problem by a sequence of free boundary problems for ordinary differential equations.
Since u0 = 0 on [s(0), X], (3.2) is self-starting. For (3.3) the solution on two previous time
levels is required. For ease of notation we shall write (3.2,3) generically as

u′′ + d(x, τn)u′ − c(x, τn)u = g(x, τn) (3.4)

where c, d, g are obtained by comparing (3.4) with (3.2) or (3.3). As an aside we remark
here that the “method of lines” terminology is ambiguous. In fact, for time dependent
differential equations the method of lines approximation frequently describes an approxi-
mation of the problem by an initial value problem for time-continuous ordinary differential
equations. Continuous time approximations are possible but not common for free bound-
ary problems, see for example [13]. To distinguish the two approaches our discrete time
method is sometimes called Rothe’s method after its use in [14].

The second order equation (3.4) is written as a first order system

u′ = v (3.5a)

v′ = c(x, τn)u− d(x, τn)v + g(x, τn) (3.5b)

It follows from the general theory of invariant imbedding [3], or by straightforward differ-
entiation, that the solution of this system is related through the so-called Riccati transfor-
mation

u(x) = R(x)v(x) + w(x) (3.6)

where R and w are the solutions of well defined initial value problems

R′ = 1 + d(x, τn)R− c(x, τn)R2, R(X) = 0 (3.7)

w′ = −c(x, τn)R(x)w − R(x)g(x, τn), w(X) = h(τn) (3.8)

We observe that the Riccati equation has a uniformly bounded non-positive solution on
[s∞, X] while the linear equation (3.8) has an exponentially decaying fundamental solution.
Hence both equations are solvable numerically to any degree of accuracy. Once R and w
are known on [s∞, X] then it follows from (3.6) and the boundary condition (2.12), (2.13)
that the free boundary s ≡ sn at time level τn must be chosen so that

1− s = R(s)(−1) + w(s)
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In other words, the free boundary s at time τn is necessarily a zero of the function

φ(x) = R(x)− w(x) + (1− x) (3.9)

Any point s which satisfies φ(s) = 0 is then an admissible free boundary at this time level.
In general s will be the first root to the left of sn−1. Once s has been determined the
solution is completed by integrating (numerically)

v′ = c(x, τn)(R(x)v + w(x))− d(x, τn)v + g(x, τn) (3.10)

with v(s) = −1 and substituting the result into (3.6) to obtain u(x) at time level τn. As
in [1] the computed solution is extended over [s∞, sn] as a linear function. This is the
complete algorithm for advancing the solution one time level to the next.

Let us now comment on the choice of the far boundary X. Clearly, X is our approxi-
mation to infinity. If X is large then the initial value problems (3.7,8) must be solved over
large intervals. On the other hand, since the solution in general changes little outside a
narrow region just to the right of the free boundary a fairly coarse integration can be car-
ried out over much of the interval. In light of numerical experiments with typical financial
parameters we shall set arbitrarily

X = 10.

For the Black-Scholes model (2.16) one can estimate a priori whether this X is a
reasonable approximation to infinity. Since u(x, 0) = 0 for x > 1, it follows that u(X, τ) ∼= 0
for small τ . In fact, it is shown in the appendix that u(X, τ) < U(τ) where

U(τ) = Xαu∞(1)erfc(lnX/σ
√

2τ), (3.11)

α = −(b− σ2/2)/σ2 and

erfc(z)
def
=

2√
π

∫ ∞

z
exp(−η2)dη

As long as U(τ) < 10−4 we set h(τ) = 0 in (3.1). For example, for r = 0.08, ρ = 0.02
and the high volatility of σ = 0.60 we find U(t) < 10−4 for τ < 0.99, while for σ = 0.4 we
find τ < 2.51. For larger τ the size of X must be increased which requires some numerical
experimentation.

Again, for (2.16) an alternative exists which exploits the integral representation (2.17).
We can set, for example, X = 2. Once U(τ) > 10−4 then one can extrapolate s(τ) over
[τn−1, τn] from computed values and determine u(X, τ) = h(τ) from (2.17). Since s(τ) is
assumed known the quadrature is straightforward. With h(τ) given we compute a new free
boundary sn with the above sweep method. This new free boundary will in general differ
from the extrapolated value and one can, in principle, now interpolate s(τ) over [0, τn] and
recompute h(τ) from (2.17). In fact one can iterate until s no longer changes appreciably.
However, numerical results show that h(τ) is quite insensitive to changes in s. Hence only
one integration of the convolution integral (2.17) needs to be carried out. Even so, the
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integration of (2.17) at each time step can be quite time consuming because the probability
distribution function has to be repeatedly evaluated.

Yet another alternative for the Black-Scholes model is a semi-analytic method of lines
which combines analytic solutions on [1,∞) with the numerical method of lines on (s∞, 1).
For definiteness let us consider approximation (3.2) although a similar development applies
to (3.3). It is straightforward to verify that the solution u(x) at time level tn over [1,∞)
can be written as

u(x) = xγ1

n−1∑
i=0

δn
i (ln x)i (3.12)

where γ1 is given by (2.19) after the substitution r ←
(
r + 1

∆τ

)
and where the coefficients

{δn
i } are found from the recursion formula

δn
i =
−γ1

[
δn−1
i−1 + ∆τi(i+ 1)σ2

2
δn
i+1

]
i[r∆τ + 1 + γ2

1σ
2∆τ/2]

(3.13)

with
i = n− 1, n− 2, . . . , 1
δn
n = 0.

We note that (3.13) does not determine δn
0 . It follows from (3.12) that

u(1) = δn
0

u′(1) = γ1δ
n
0 + δn

1

so that
u′(1) ≡ v(1) = γ1u(1) + δn

1 . (3.14)

A comparison with (3.6) shows that we account for (3.14) if we integrate (3.7) and (3.8)
over (s∞, 1] subject to the initial conditions

R(1) = 1/γ1

w(1) = −δn
1 /γ1

(3.15)

The coefficient δn
0 is found at the conclusion of the calculation at time level tn from

δn
0 = u(1) = R(1)v(1) + w(1).

Clearly, this modification reduces the amount of computation considerably since there are
no error functions to be evaluated and since the interval of integration is short. On the
down-side is the observation that for small ∆τ the exponents γ and γ1 in (2.19) and (3.12)
satisfy

γ1 � γ < 0.

Since u in (3.12) must converge to u∞ in (2.18) it follows that the coefficients δn
i must

become quite large as n → ∞ (see Table 1 below). This limits the applicability of (3.12)
for long-term solutions and requires double-precision even for moderate times to maturity.
We have not discovered a scaling of the Black-Scholes model which eliminates this problem.
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For the call option the singularity in the problem is due to the vanishing coefficients
in (2.16). If the boundary point x = 0 is perturbed to x = ε, then it follows from the
maximum principle that u is monotonically increasing on [ε, s̄(t)]. Hence the solution u
and its first derivative are uniformly bounded with respect to ε and it is safe to replace
u(0, τ) = 0 with u(ε, τ) = 0. Thus the call option appears somewhat simpler to compute
than the put option. However, for long-term options the free boundary grows without
bounds so that the numerical problems are much the same as in the put.

Finally we observe that the Riccati equation corresponding to the Black-Scholes model
has the closed form solution

R(x) = µx

[
1 +

1

A− (x/X)α(1 + A)

]
(3.16)

where α, µ, and A are found by substituting this expression into (3.7).

§4. Implementation and Numerical Results

Numerical results are presented first for two Black-Scholes problems chosen randomly
from the many sample problems described in the literature. The following algorithms were
implemented.

Method 1): First and second order method of lines with invariant imbedding on [s∞, 10].
h(τ) = 0 for U(τ) < 10−4, h(τ) computed from (2.17) when U(τ) ≥ 10−4.

For comparison we also list the value of the put obtained by evaluating (2.17) nu-
merically after the free boundary is known on [0, T ].

Method 2): First order semi-analytic method of lines with invariant imbedding on [s∞, 1]
and initial conditions (3.15).

For both methods we choose a constant time step ∆τ = T/N for some integer N . Next
we define a fixed mesh s∞ = x0 < x1 < . . . < xj < . . . < xM = X. This mesh need
not be uniform. For time independent coefficients in (2.11) the Riccati equation (3.7) is
integrated once with the trapezoidal rule from xj+1 to xj , j = M − 1, . . . , 1. The results
are stored. The algebraic equation resulting from the trapezoidal rule is quadratic in the
unknown Rj and can be solved by formula.

We observe next that the linear equation (3.8) always depends on time through the
source term and possibly, the initial condition. Hence it must be integrated at each time
step. Its solution is also found with the trapezoidal rule which leads to a linear algebraic
equation for wj. As the values for w become available the algebraic sign of φ(x) defined
by (3.9) is monitored at each mesh point. If φ(x) changes sign between mesh points xj

and xj+1 then the free boundary s at time level τn is found from the zero of the cubic
interpolant through {φ(xj−1), φ(xj), φ(xj+1), φ(xj+2)}. φ(x) was observed to have only one
root on [s∞, X] in our examples. The equation (3.10) is integrated with the trapezoidal
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rule, first from sn to xj+1 and then over the fixed mesh to X. The right-hand side of (3.10)
required for the first integration step at s is also found by interpolation. Finally, we find
un(x) from (3.6) and go to the next time step.

For the second order method we generally use the initial condition and the solution
from the first order method at ∆τ to get started. For the Black-Scholes model one could
use the analytic solution at ∆τ instead [1].

The numerical results shown here were obtained with a Fortran code. The program
was not particularly fine-tuned. Optimization was provided by the compiler. Runs were
executed on a workstation. For all runs with Method 1 we chose ∆x = (1 − s∞)/200 on
[s∞, 1], ∆x = 1/100 on [1, 2] and ∆x = 8/500 on [2, 10]. For Method 2 we took a uniform
mesh of ∆x = (1−s∞)/200. Numerical answers changed little as this mesh size was further
reduced.

The first example is chosen from the discussion of the analytic method of lines [1]
where equation (3.2) is solved analytically over (sk, sk−1), k = 1, . . . , n and (1,∞) in terms
of fundamental solutions and particular integrals like (3.12). Our numerical results are
summarized in Table 1.
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The analytic method of lines becomes quite involved if many time steps are to be
executed because solutions over adjacent subintervals must be linked up smoothly. To
reduce the amount of calculations a high order Richardson extrapolation based on the
theory of [15] is employed in [1]. However, the extrapolation formulas are developed in [15]
for linear boundary value problems with smooth solutions. The free boundary problem,
on the other hand, is inherently nonlinear. In addition we know that the solution is
not smooth in a neighbourhood at t = 0. The ad-hoc “fine-tuning” of the extrapolation
formulas required in [1] reflect some of these difficulties. In fact, if we assume a local error
bound for the numerical solution of (2.16) of the form

uT (100, 1)− u∆τ(100) ∼= K(∆τ)α

where uT is the analytic solution and K is independent of ∆τ , then any two numerical
solutions u∆τ1, u∆τ2 and the estimate for the analytic solution can be used to compute α
from the formula

α ln
(

∆τ1
∆τ2

)
=
uT − u∆τ1

uT − u∆τ2

(4.1)

Pairwise data of Table 1 obtained with the first order approximation (3.2) quite consistently
yield

α ∼= 0.9

which is far less than is required for the theory of [15]. On the other hand, a two-level
extrapolation of the above data for, e.g., ∆t = 1/100 and ∆t = 1/200 according to (4.1)
yields the improved answer

uT (100, 1) = 8.33820.

However, the above data obtained with the second order approximation show no such
consistency making extrapolation doubtful. Yet they appear much more accurate. Hence
we prefer mesh refinements over extrapolation for checking convergence of the numerical
solution.

The second example duplicates a calculation of [16] where an approximate solution of
(2.16) is found by assuming a specific functional relationship for u(x, t). This example will
show the effect of long times to maturity and the importance of the numerical boundary
condition at X. Numerical results are shown in Table 2.
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Table 2: Free boundary s(0) (before scaling)
r = 0.08, ρ = 0, σ = 0.3

T = 5. A numerical approximation to the free boundary
at maturity is given in [21] as s(0) = 66.6219

∆t 1st order CPU 2nd order CPU Semi-anal. CPU
MOL sec MOL sec MOL sec

5/100 66.6431 0 66.6133 0 66.6428 0
5/200 66.6280 0 66.6128 0 66.6274 0
5/500 66.6183 2 66.6121 2 66.6180 0
5/1000 66.6150 5 66.6104 6 66.6146 1

T = 10. The steady state free boundary is s∞ = 64.00
10/100 64.9604 0 64.9399 0 64.9600 0
10/200 64.9499 1 64.9397 0 64.9496 0
10/500 64.9437 3 64.9394 4 64.9433 0
10/1000 64.9414 12 64.9393 12 64.9411 1
10/5000 64.9379 246 64.9381 249 64.9392 24

The enormous increase in computing time is due to the calculation of h(τ) from (2.17)
which was carried out during the last 2810 steps where U(t) > 10−4. Clearly, the naive
integration of (2.17) with a trapezoidal rule should be replaced by a more sophisticated
method based on an interpolant of the integrand involving only few function evaluations.
Since any such algorithm would be specific to the Black-Scholes model we did not pursue
this improvement.

The final example is chosen solely to illustrate the changes in the code required when
we no longer have a Black-Scholes model. As our equation we shall take a financial model
with residual volatility and an absorbing boundary condition which combines some of the
features discussed in [6]. We shall assume that after scaling according to (2.10) the equation
(2.11) is

1

2
σ2(1 + x2)uxx + bxux − ru− uτ = 0 (4.2)

u(X, τ) = 0 (4.3)

u(x, 0) = 0, x > s(0) = 1 (4.4)

The following absorbing free boundary condition is imposed

u(s, (τ), τ) = 1− s(τ) and (4.5)

u(s(τ), τ) = −1 if s(τ) > 0.5 (4.6)

u(.5, τ) = .5 otherwise (4.7)

Equation (3.4) obtained by discretizing uτ is straightforward to derive. Only its coef-
ficients change in comparison to the Black-Scholes formulation. The integration of (3.7)
and (3.8) with h(τ) = 0 is carried out over [0.5, X]. The function φ(x) described by (3.9)
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remains unchanged. If it has a zero on [0.5, 1] then that point is the free boundary at time
level tn. If φ does not have a zero on [0.5, 1] then sn = 0.5 and the derivative condition
(4.6) is ignored. From (4.7) and (3.6) follows that

v(0.5) =
(.5− w(.5))

R(.5)

is the correct initial condition for equation (3.10).

Table 3 lists some representative results obtained with the second order method of
lines. For T = 1 we use X = 10, u(X, t) = 0 and the same spacial mesh as in Table
1. Representative results are listed in Table 3. For the long-term problem T = 10 the
boundary point X must be chosen out far enough so that its location has no influence on
u(x, τ). The second part of Table 3 illustrates the numerical experiments one needs to
carry out to determine an acceptable X when no numerical boundary value h(τ) is known
at a fixed X so that X must approximate infinity.

Table 3: American put with residual volatility and absorbing boundary
r = 0.08, ρ = 0.02, σ = .6

T = 5
T − t = τ to reach

∆t u(100, 0) absorbing boundary
1/100 21.9546 0.10500
1/200 21.9559 0.10250
1/500 21.9565 0.10100
1/1000 21.9567 0.10100
1/20001) 21.9568 0.10075

T = 10

∆t X2) u(100, 0)
10/5000 10 40.5495
10/5000 20 40.8137
10/5000 30 40.8388
10/5000 40 40.84373)

1)11 CPU sec for a double precision run.

2)∆x = 0.016 on [2, X].

3)89 CPU sec for a double precision run.

The numerical experiments described above allow the following conclusions.

1) The second order method of lines approximation is the numerical method of choice.
The solution at τ = ∆τ can be obtained from the first order method or, when
applicable, from an analytic solution of the method of lines approximation at ∆τ .
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2) Because the free boundary initially moves with infinite speed but slows down very
quickly any commercial implementation of the method should accommodate variable
time steps. Note that the Riccati equation must be resolved when ∆τ changes.

3) For the Black-Scholes model and short times one can use the semi-analytic method
in order to avoid error function evaluations. However, in view of the performance of
the first and second order numerical methods a second order semi-analytic method
based on (3.4) would appear to be preferable.

§5. Extensions

As indicated earlier our method is not tied to the special structure (2.16), and our
method should be able to handle American options with more general models for stock
prices like those presented in [5] and [6] where some numerical results are presented based
on the recursive implementation method of [17]. As the MOL is not limited in use to
one-dimensional free boundary value problems, [18], a further task will be to consider its
application to pricing American options on underlying stock described by a multi-factor
model ( see for example [20], [21] ).

§6. Appendix: An a priori bound for u(X, τ)

Consider the Black-Scholes model (2.16) subject to (2.12-15). We take for granted
the existence of a classical solution {u(x, τ), s(τ)} with s′(τ) ≤ 0. Standard maximum
principle arguments assure that

max{1− x, 0} < u(x, τ) < u∞(x)

where the steady state solution u∞(x) is given by (2.18). Likewise, it follows from the
maximum principle that for 1 < x <∞ and τ > 0 the inequality

u(x, τ) < W (x, τ)

holds where W (x, t) is the solution of (2.16) subject to

W (1, τ) = u∞(1), W (X, τ) = 0, W (x, 0) = 0, 1 < x < X.

We shall find a bound on W (x, τ). If we set

W (x, t) = eαy+βτV (y, t)

where
y = ln x

t =
1

2
σ2τ

and

α = 0.5− b

σ2
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β = −r − α2σ2

2

then one can verify that V is the solution of the problem

LV ≡ Vyy(y, t)− Vt(t, y) = 0

V (0, t) = u∞(1)e−(2β/σ2)t, V (lnX, t) = 0 V (y, 0) = 0, 0 < y < lnX.

Let φ(y, t) be the solution of

Lφ ≡ φyy(y, t)− φt(y, t) = 0

φ(0, t) = 1
φ(y, 0) = 0, y > 0

and define
Φ(y, t) = u∞(1)e−(2β/σ2)tφ(y, t)

then we see from

L(Φ− V ) =
2β

σ2
Φ(y, t) ≤ 0

and the maximum principle that

V (y, t) ≤ Φ(y, t)

The solution φ(y, t) is known to be

φ(y, t) = erfc

(
y√
4t

)

Reversing the transformations we find that

u(X, t) < Xαu∞(1)erfc

(
lnX

σ
√

2τ

)
.
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[12] ibid., “Estimation de la frontiére libre des options américaines au voisinage de
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