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Stochastic Volatility Model 
 

(April, 2001) 

 

Summary 
 
The stochastic volatility model in Reditus allows users to impose an upper and/or lower barriers 

on the asset, it also allows upper/lower barriers on volatility. Users can specify  parameters for 

the model in term-structure form or as constants, i.e. interest rate, volatility,  correlation, kappa, 

theta, lambda can all be imported in term-structure form or through a data-feed link. This 

document outlines the implementation of the stochastic volatility model in the Reditus finite-

element engine, for details on the implementation in the Reditus Monte-Carlo engine, please 

refer to a separate document on Reditus Monte-Carlo engine. 

 
 
The Model 
 
The stochastic volatility model can be formulated as such [1]: a single asset S that follows a log-normal 

Brownian process: 

1SdZSdtdS υµ +=  

and the variance ν evolves according to a mean-reversion stochastic process: 

2)( dZdtd υσυθκυ +−=  

 

here, µ is the drift of a single asset S, κ is the rate of mean-reversion for variance ν, and θ is the long 

term mean level of the variance, σ is the volatility of the variance ν. t  is the current time, 1Z  and 2Z are 

two Wiener processes which have a correlation coefficient ρ. 

 

Similar governing stochastic equations can be found in references such as [2]. 

 

 
Contingent Claims: 
 

   The value V of any contingent claim that is dependent on the asset S now is not only a function of S 

and time t, it is also a function of the variance ν: i.e. V = V(S, ν, t). As there are two independent random 

processes, we need to use asset S and another contingent claim to hedge away the stochastic components. 

In a procedure similar to deriving equations for bonds, we arrive at the partial-differential equation 

(PDE) governing the option price V(S,ν ,t):  
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here λ is the market price of  risk. This equation has two independent variables: S and ν. There are 

various ways of solving such equations, in the Reditus implementation, we will solve the PDE in the 

same way as for  a typical  two-factor model.  
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Implementation in Reditus 
 

In the current Reditus set-up, we use S as the first dimension (first factor or the X-coordinate), and the 

variance ν as the second dimension (second factor, or the Y-coordinate). Barriers can be enforced for 

both the asset S and variance ν. In the current version of Reditus, only one upper barrier and one lower 

barrier can be specified for the asset S and variance ν. The barriers can be switched on or off during the 

tenor of the option. However, the barrier levels are fixed from onset.   

 

The scale of asset prices varies in quite different magnitude of numerical values, the variance is however 

limited to the scale of [0,1]. The scaling of S or variance ν is extremely important to maintaining high 

accuracy in pricing contingent claims numerically. Reditus provides the facility for users to freely 

choose or impose scaling rules for either the asset S or variance ν. In the current implementation, we 

keep the absolute value of variance along the Y-coordinate, and scale asset S to make the o-XY 

computational domain into a square shape. In doing so, we can maintain similar accuracy level for both 

the asset S and variance ν. Of course, users can freely and easily change the scaling of asset S according 

to their own needs or belief. Users can set up their scaling rules or a formula in the script file 

stochastic.prm (here the file extension ***.prm stands for the parameter file of a model named as ***) 

where the cut-off points for both the asset and variance are also set. Alternatively, users can simply go to 

the System page of the Excel interface to change the specific cell for scaling or infinity cutting-off points. 

(However, if the parameters are only changed in the System page, the parameter setting is only used for 

the current computation, they will not be stored when the same model is invoked next time. To save for 

future use, users should change the scaling and infinity cutting-off points in the parameter file 

stochastic.prm, or their own ***.prm).  

 

Pay-Off Functions: 
 
Currently, we have the simple call and put payoff functions written in the script file stochastic.prm and 

they are the default. However, users can easily change the default pay-off functions into their own 

specific payoffs, such as digital payoffs, or as a formula dependent on the asset price. Users can change 

the payoff function by going to the System page to change the payoff function cell, or directly change the 

payoff function in the parameter script file: stochastic.prm, which will be discussed later in the 

document.  

 

 

Input Market Data in Reditus 
 
Reditus accepts all the parameters of the stochastic volatility model as constant or in term 

structure form. The following parameter names in Reditus correspond to those parameters 

described at the beginning of this document for the stochastic model: 

 

RiskFree =    r(t) 

Volatility =  σ(t) 

Correlation =   ρ(t) 

kappa =    κ(t) 

theta =     θ(t) 

lambda =    λ(t) 

 

If users do not click the Term Structure button, all the parameters for the volatility model will be 

constant in time, they will appear in the Parameters panel on the Main Page of the Excel front-

end. Users can simply specify a value for each of the parameters as constant in time, as shown 

here:   
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 If the Term Structure button is pushed on the Excel interface, users should go to the extra 

MarketData sheet of this Excel front-end to supply all the parameters in term-structure format as 

shown here:  

 

 
 
 
here, Date stores the different dates at which the market parameters are supplied. The first 

column on the left of the Date array is automatically calculated by the Excel front-end, users do 

not have to input data in this column. 

 
Test Case: 
 
The first test example is a one-year option with the following constant parameters: 

 

T Strike spot σ θ κ λ ρ r 

1 year 10 10 0.3 0.04 2.0 0.0 0.5 0.1 
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This set up can be compared with a one-year option with a constant volatility of 0.2, r =0.1, 

strike=10, spot=10  in a standard Black-Scholes framework as shown in the following table: 

 

Analytic Solution: 

B&S Formula: Call Put 

Price 1.3270 0.3753 

Delta 0.7257 -0.2743 

Gamma 0.1666 0.1666 

Theta -0.9263 -0.0214 

Vega 3.3322 3.3322 

 

It is interesting to compare the price and greeks from the above standard Black-Scholes 

framework with those of the stochastic volatility model shown here in the following two tables: 

 

Reditus Stochastic Volatility Model 

Call Option:  Finite-Element engine Monte-Carlo engine 

Price 1.2787 1.2909 

Delta 0.706076  

Gamma 0.209249  

Theta -0.904222  

Vega 1.47389  
here, for the Monte-Carlo price,  the corresponding implied volatility is 0.18813 

 

Reditus Stochastic Volatility Model 

Put Option: Finite-Element engine Monte-Carlo engine 

Price 0.333265 0.3368 

Delta -0.293996  

Gamma 0.209308  

Theta 0.00167852  

Vega 1.47439  
here, for the Monte-Carlo price, the corresponding implied volatility is 0.1883 

 

The set-up in Reditus Finite-element engine for the stochastic volatility model is as the 

following: 

 

Number of mesh points      2500 

Type of mesh:       linear elements 

Concentration along strike:         Weighting 0.1, Attenuation:  0.01 

Concentration at spot:      Yes 

 

The set-up in Reditus Monte-Carlo engine is as the following: 

Number of simulations:     50000 

 

As can be seen from the above three tables, the difference between using a stochastic model and 

a standard Black-Scholes is not very large for vanilla style options. The option prices for both 

Call and Put from the stochastic volatility model is around 10% less than that of the standard 

Black-Scholes model. 
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Second Test Case: 
 
The second test example is similar to the first test case, except that a lower barrier and upper 

barrier exist for the asset during the  one-year tenor period. Details of the deal is listed here: 

  

T Strike spot σ θ κ λ ρ r Lower barrier Upper barrier  

1 year 10 10 0.3 0.04 2.0 0.0 0.5 0.1 4 15 

 

This set up can be compared with a one-year double knock-out barrier option with a constant 

volatility of 0.2, r =0.1, strike=10, spot=10 in a standard Black-Scholes framework using 

Reditus one-factor model (1FactorBarriers model) as shown in the following table: 

 

Computational Results from Reditus Standard Black-Scholes Barrier Option Model 

Reditus finite-element engine: Call                  (Analytic) Put                  (Analytic) 

Price 0.88602         (0.8868) 0.375386      (0.3753) 

Delta 0.274016 -0.274267 

Gamma -0.153997 0.16643 

Theta 0.129926 -0.0213986 

Vega -3.57672  3.32218 

 

The following screen shot records the deal set up for the Call calculation: 

 
 

As a record, the set-up in Reditus Finite-element engine for the one asset model is provided here: 

 

Number of mesh points    1500 

Type of mesh:     quadratic elements 

Concentration along upper barrier:   Yes for Call, Weighting 0.1, Attenuation: 0.01 

Concentration along lower barrier:   Yes for Put,  Weighting 0.1, Attenuation: 0.01 

Concentration at spot and strike:  Yes 

 

These parameters can be viewed in the System Page, they can also be changed dynamically 

before calculating the price:  
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The price and greeks from the stochastic volatility model is list in the following table: 

  

Computational Results from Reditus Stochastic Volatility Model 

Reditus Finite-Element engine Call Put 

Price 0.730173 0.332604 
Delta 0.298321 -0.293523 
Gamma -0.0322748 0.1953 
Theta 0.043426 0.00237265 
Vega -1.1454 1.45766 

 

A screen shot of the Reditus interface for the Call deal is shown here: 
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The set-up in Reditus Finite-element engine for the stochastic volatility model is as the 

following: 

 

Number of mesh points      2500 

Type of mesh:       linear elements 

Concentration along strike:         Weighting 0.1, Attenuation:  0.01 

Concentration along barriers:         Weighting 0.1, Attenuation:  0.01 

Concentration at spot:      Yes 

 
This information is actually stored and can be changed in the System Page of  the Reditus Excell 

interface: 

 

 
 

As can be seen, the Call Payoff Function and Put Payoff  Function in the System page are listed 

as:   cut(X1 – strike)   

and   cut(strike – X1) 

where,  cut is a function that will leave positive value intact and set anything negative to zero,  

X1 represents the first factor coordinate: i.e. the X-coordinate (X2 is used to represent the second 

factor, or the Y-coordinate). Users can directly change these cells for pay-off functions to 

whatever formula that uses X1, X2 or  Reditus system parameters  as dependent variables. For 

example, if we would like to use the variance ν to make up the  pay-off function for Call/Put, 

they would be: 

cut(X2 – strike)   

cut(strike - X2 )   

 

 

Benefits of Using Reditus 
 
The current model can be easily and readily extended or modified to incorporate volatility 

models such as the Hull & White and Garch (1,1) models. The term structure input for σ, ρ, θ, λ, 
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κ gives users the freedom to experiment with different market data. As the Excel interface is dynamically 

linked with the finite-element engine, any added parameters both constant or in term-structure form are 

automatically updated and linked to appear on the main page of the Excel interface. 

 

In addition, users can rely on the graphical display of Reditus to study and construct option deals 

intuitively.   We will take the double barrier option of the second test case as an example. This 

double barrier option deal using stochastic volatility model is represented in a two dimensional 

O-XY domain as shown here in the following figure (the mesh points  are automatically 

generated by the Excel interface program when the deal is set up):  

 

 

 
 

In this figure, the horizontal axis (X-coordinate) is the asset axis and the vertical axis (Y-

coordinate) is the axis for the variance ν. As a lower barrier and an upper barrier exist for the 

asset, two vertical lines are set up to represent them. As we have specified in the System page, 

mesh concentration is needed along the barriers, which can be seen here in the figure (more mesh 

points are concentrated along the barriers to increase the accuracy of computation). As the strike 

price is between the two barriers, and there is also concentration of mesh points along the strike 

line (as specified in the System page), we have a total of three vertical lines of mesh clustering in 

the figure. If the barrier concentration cell is not ticked, there will not be any mesh points 

clustering around the barriers, and in general, the accuracy of the option price might be lower.   

 

As an exercise, users can change the settings in the System page and see what difference the 

change would cause to the option price (the Save and Batch functions are convenient ways to 

conduct a series of such experiments). Reditus provides a convenient and useful tool for 

experimenting with different configurations for computing option prices, such as the number of 

mesh points, infinity cutting-off points, scaling rules and the concentration of mesh points 

around areas of high price differential. 

 

In the following figure, the colour contour plot of the double barrier option price is shown here 

together with the colour bar indicating the price/colour correspondence. The area of red colour 

indicates high option price while the blue colour represents low option price approaching zero. 
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We can easily see that for the call option, the upper barrier cuts sharply into the high price region 

at small variance values (lower section of the Y-coordinate).   

 

 
 

 
 
  

 

 

 

Reference   
 
 [1] P. Forsyth,  K. Vetzal and R. Zvan: A Finite Element Approach to the Pricing of Discrete Lookbacks 

with Stochastic Volatility, Technical Report from WWW:http://yoho.uwaterloo.ca:80/~paforsyt/, July 11 

1997. 

 

[2] Paul Wilmott: Derivatives: The Theory and Practice of Financial Engineering, pp 299-304, 

University Edition, John Wiley & Sons 1998. 

 


