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Abstract. The linear asymptotic boundary condition, i.e. assuming that the second derivative
of the value of the derivative security vanishes as the asset price becomes large, is commonly used in
practice. To our knowledge, there have been no rigorous studies of the stability of these methods,
despite the fact that the discrete matrix equations obtained using this boundary condition loses
diagonal dominance for large timesteps. In this paper, we demonstrate that the discrete equations
obtained using this boundary condition satisfy necessary conditions for stability for a finite difference
discretization. Computational experiments also show that this boundary condition satisfies sufficient
conditions for stability as well.
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1. Motivation. When solving option pricing PDEs such as the Black-Scholes
equation numerically, many authors [19, 18, 10] have recommended a linear asymptotic
boundary condition (that the second derivative of the option value with respect to
the underlying asset value be zero) as the asset price becomes large. Although this
boundary specification is often applied, to our knowledge there have been no rigorous
studies of the stability of this technique. Looking at the form of the discrete matrix
equations obtained using this boundary condition, the resulting discrete equations lose
diagonal dominance for large timesteps and the usual arguments cannot be applied
to guarantee unconditional stability.

In order to determine the ranges of parameters (risk-free rate, volatility, etc.) for
which this asymptotic boundary condition could cause instability, we derive necessary
conditions for the stability of the discrete equations based on the spectrum of the
matrix representing the spatial discretization. Somewhat surprisingly, we find that
a finite difference (FD) discretization always satisfies these necessary conditions for
stability, despite the fact that the matrix equations are not unconditionally diagonally
dominant.

The eigenvalues can be used to determine necessary conditions for stability but
are known to be unreliable for determining sufficient conditions for stability. For
finite dimensional problems analysis of the spectrum can lead to sufficient conditions
but in the PDE context, the size of the matrix becomes unbounded as the grid is
refined. In our case the matrix is non-symmetric and non-normal, and for non-normal
matrices, counterexamples can be given where, even if the eigenvalues are less than
one in magnitude, instability results as the dimension of the matrix becomes large
(see [11, 7, 9, 17]). For some values of the market parameters we are able to show
that sufficient conditions for stability are satisfied using numerical range arguments
[7, 8, 16, 3]. In other cases, these arguments cannot be applied and we follow [2] and
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demonstrate that the discrete timestepping operator is power-bounded, via numerical
experiments.

2. Problem Formulation. We will consider the standard Black-Scholes equa-
tion, which can be written as:

Vt + (r − q)SVS +
σ2S2

2
VSS − rV = 0 , (2.1)

where V (S, t) represents the value of the derivative security, S is the value of the
underlying security, r is the risk-free interest rate, q is the continuous dividend yield
and σ, is the volatility of the underlying asset. In the following, we will make the
simplifying assumptions that σ = σ(S), and that r, q are constants, with r > 0. These
assumptions are used to simplify some of the proofs which follow. In order to ensure
that the stock price process is well-behaved, we assume that [13]

σ(S) ≤ C1 ; S →∞
∂(S2σ2)
∂S

= 0 ; S → 0 , (2.2)

where C1 is independent of S. Once the contractually defined payoff of the derivative
security, V (S, T ) = g(S), is specified, equation (2.1) can be solved backwards in time
from the maturity date of the contract, t = T , to the present time, t = 0, in order to
obtain the current value of the contract.

The original problem (2.1) is posed on the domain [0,∞). The boundary condition
at S = 0 is obtained simply by setting S = 0 in equation (2.1). This results in the
specification:

Vt(0, t) = rV (2.3)

at the lower boundary. Of course, when using an implicit type of numerical scheme, we
must truncate this domain to [0, Smax]. Consequently, it is also necessary to impose
a boundary condition at S = Smax. If the error made in the approximation of this
boundary condition is bounded then, by extending the computational domain, it is
possible to make the near-field error (i.e. the error in the solution for practical values
of S) arbitrarily small. In [6], detailed estimates are obtained for the error in the
solution due to misspecification of the correct boundary condition at S = Smax. For
example, in the case of a European call, with boundary condition at S = Smax set to
the payoff, and assuming that σ2 > 2r, it is shown that if

Smax > K exp(σµ
√
T ) (2.4)

where µ =
√

2| log(tol)| and K is the strike, then the error in the solution at S = K
is less than K × tol. In order to be able to utilize small computational domains, it is
important that the error in the approximation of the boundary condition be as small
as possible.

Equation (2.4) tends to be somewhat pessimistic. An alternative idea is based on
the fact that the solution to the SDE

dS = S(r − q) dt+ Sσ dZ (2.5)

where dZ is the increment of a Wiener process, is

S(T ) = S0 exp
(

(r − q − σ2

2
)T + σφ

√
T

)
, (2.6)
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where φ is a random draw from a standard normal distributon with mean zero and
unit variance. If we assume that the probability of S(T ) ocurring at µ standard
deviations away from the mean is negligible, then this suggests that choosing an
artificial boundary Smax such that

Smax > K exp
(

(r − q − σ2

2
)T + σµ

√
T

)
, (2.7)

should results in a small error near S = K. Typically, one chooses µ = 3. Note that
if we ignore the drift term in condition (2.7), then condition (2.7) is formally very
similar to condition (2.4), but with a different criteria for selecting µ.

We note that in some circumstances, it may be desirable to specify a computa-
tional domain [Smin, Smax], Smin > 0, with artificial boundary conditions imposed at
both Smin, Smax. In this paper, we will focus on the case where the computational
domain is [0, Smax], and we will point out the cases where the results can be extended
to the case of a computational domain [Smin, Smax], Smin > 0.

For path-dependent options, estimates such as those given in [6] are not always
sufficient to ensure accurate results. This is because the solution at points of interest
may depend on far-field data (i.e. remote from S values of interest) through the
contractually defined jump conditions. An example of such a situation is in the
full three-dimensional numerical valuation of multiple shout options described in [22]
where the required size of the computational domain grows exponentially with the
number of shout opportunities. Some popular insurance products offered in Canada
[21] can offer the investor as many as 60 total shout opportunities (referred to as
“resets” in these contracts) over the life of the contract. Hence, for path-dependent
products it can be extremely important to have an accurate method for approximating
the boundary condition on the truncated computational domain.

2.1. Dirichlet Boundary Conditions. One of the simplest methods for spec-
ifying the boundary behavior is to provide a Dirichlet condition at Smax. In some
cases, it is fairly straightforward to determine an asymptotic form of the PDE (2.1)
using financial reasoning. The examples below demonstrate the ad hoc nature of the
Dirichlet boundary specification:

Call option: V (S →∞, t) = Se−q(T−t)

Put option: V (S →∞, t) = 0

Digital call option: V (S →∞, t) = e−r(T−t)

The main difficulty with imposing a Dirichlet condition is that it is assumed that
one has some additional knowledge about the behavior of the solution. In the simple
examples given above, this asymptotic behavior can easily be determined. However,
when modeling complex contracts the appropriate Dirichlet specification may not be
obvious. As the examples above demonstrate, the Dirichlet condition is not suitable
for general-purpose software designed for solving the Black-Scholes equation since the
appropriate Dirichlet condition intimately depends upon the payoff of the derivative
contract being priced, as well as assumptions about the stochastic process followed
by the underlying asset. In addition, path-dependent options with jump conditions
further complicate matters. Consequently, it is of much interest to find a way that
automatically determines asymptotic behavior consistent with the financial context.
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2.2. The Linear Boundary Condition. If the payoff is at most linear in S
and if the stochastic process followed by the underlying asset is suitably well-behaved,
then we can show that the value of the derivative security is asymptotically linear as
S →∞. Path-dependent options also fit into this framework if the payoff is at most
linear in the state variables and the jump conditions updating the state variables are
at most linear. This includes simple call, put and digital options as well as Asian,
lookback, barrier, shout and a host of other exotic options.

One way that we can implement this linear condition is to assume that V is of
the form:

V (S, t) = a(t)S + b(t)

where the a(t), b(t) are to be determined. By substituting this form into (2.1) we
obtain an ordinary differential equation (ODE) for the coefficients a(t) and b(t):

Vt(S →∞, t) = rb(t) + qa(t)S . (2.8)

This separates into two ODEs and can be solved to obtain a time-dependent boundary
specification that can be implemented using a Dirichlet node. In [21] we provide an
example using this boundary specification for a very complex path-dependent option.

The ODE formulation offers a much simpler implementation compared with the
Dirichlet node since the appropriate boundary condition is determined on the fly
and does not need to be coded a priori for each class of contracts. However, for
path-dependent options each new contract requires a different method for updating
a and b after each jump condition. This is an error prone procedure and can lead to
cumulative interpolation error.

An alternative is to impose the linear condition VSS = 0 directly in the dis-
cretization of the PDE. With the assumption of linearity, the Black-Scholes equation
becomes:

Vt + (r − q)SVS − rV = 0 , (2.9)

and the remaining spatial derivative, VS , can be approximated using a one-sided
finite difference using data in the computational domain. This approach has been
suggested as a general technique by several authors including [18, 19, 10]. However,
to our knowledge, there have been no detailed analyses of the stability properties of
this method. In the typical situation where r − q > 0, this one-sided differencing can
be thought of as using downstream weighting for the convective term. It is well known
from the computational fluid dynamics (CFD) literature that downstream weighting
often gives rise to numerical instability. As such, it is perhaps surprising that this
method has been used for many years without reported difficulties.

It is also worth noting that this method has been re-invented many times in the
literature. For example, in [10] the author derives the “natural boundary condition”
in the finite element context. The natural boundary condition is formally equivalent
to the linear boundary condition described in this paper.

2.3. The PDE Boundary Condition. Each of the methodologies given above
for handling the boundary condition imposes some additional information; either a
known value for the solution, or an assumption of linearity. In some situations, such
as a power contract, whose payoff is given by V (S, T ) = Sp for some constant p, we
are not able to assume the the value of the contract is asymptotically linear in S if
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p > 1. Another example of a contract whose value is not asymptotically linear is a
discretely observed variance swap.

In [18] the authors propose a boundary technique that does not require additional
linearity assumptions. This FD method involves using one-sided derivatives for the
spatial discretization of the PDE. In general, since we are not specifying any additional
constraints on the behavior of the solution and downstream information is used for
the convective terms, it is not obvious that this method will be stable.

3. Definitions of Stability. Equation (2.1) can be cast into the form of a
convection-diffusion problem using the transformation τ = T − t,

Vτ =
σ2S2

2
VSS + (r − q)SVS − rV . (3.1)

Given a discrete grid of S-values, Si, i = 1, . . . , n, we represent the value of the
derivative security, at time level τ = τk, by the vector V k, where the ith component
is V ki = V (Si, τk). A semi-discrete form of equation (3.1) can then be written as

V kτ = −AV k (3.2)

where A is a discretization of the spatial operator in equation (3.1), i.e.

−AV k =
σ2S2

2
V kSS + (r − q)SV kS − rV k

+ discretization error . (3.3)

Now, if we discretize equation (3.2) in the time direction, we then obtain

(I + θA∆τ)V k+1 = (I − (1− θ)A∆τ)V k , (3.4)

where θ = 0 is fully explicit, θ = 1
2 is Crank-Nicolson and θ = 1 is fully implicit

timeweighting. To avoid algebraic complication, we will assume that any Dirichlet
boundary conditions are time independent (it is straightforward to extend the analysis
to the time-dependent case, at the expense of notational complexity). We can write
the discrete equations (3.4) as

V k+1 = (I + θA∆τ)−1(I − (1− θ)A∆τ)V k ,

or

V k+1 = BV k , (3.5)

where the matrix B is defined1 as

B = (I + θA∆τ)−1(I − (1− θ)A∆τ) . (3.6)

If V 0 is the initial condition, then after k timesteps we have

V k = BkV 0 . (3.7)

1 In Theorem 5.2 we will see that the eigenvalue of A, λ = q, is preserved and the remaining
eigenvalues of A have non-negative real parts. As a result, it follows that the inverse of the matrix
(I + θA∆τ) can always be computed if q ≥ 0. If q < 0, then (I + θA∆τ) has a zero eigenvalue,
and hence this matrix cannot be inverted when θq∆τ = −1. However, this would require unrealistic
values of q and ∆τ and is not a problem of practical concern. Throughout this paper we impose the
condition that ∆τ < |1/q| when q < 0.
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Given an arbitrary norm ‖ · ‖ we define the following notions of stability. We say
that B is strictly stable if

‖Bk‖ ≤ 1, ∀k, n > 0 . (3.8)

Strict stability is also referred to as practical stability by some authors [14]. We also
define strong stability as [5]

‖Bk‖ ≤ C, ∀k, n > 0 , (3.9)

and algebraic stability [5, 16] as

‖Bk‖ ≤ kpnlC, ∀k, n > 0 , (3.10)

where C, p, l ≥ 0 are constants independent of k and n, where n is the dimension of B.
The estimates (3.8), (3.9) and (3.10) must hold uniformly for the family of matrices
generated by letting ∆S,∆τ → 0, which implies that n, k →∞.

In this paper we are interested in studying the stability of the matrix operator B.
If this operator is not stable, then small errors made during the numerical computa-
tions can be amplified, rendering the numerical solution useless. In particular, looking
at the form of the discrete equations obtained using the linear boundary condition, we
were initially very concerned that this method may lead to unstable discretizations.
However, we will see that in usual situations this is not the case and that the linear
boundary condition can be safely used in practice.

4. Form of the Discrete Equations. In this section we provide specific details
concerning the FD discretization of the PDE at the interior nodes. The discretization
discussed here utilizes upstream differencing when the governing equations become
convection dominated. This ensures that the discrete equations corresponding to
nodes in the interior of the domain are diagonally dominant.

The matrix A given in (3.4) is of the form:

A =



r 0
−α2 r + α2 + β2 −β2

. . .
−αn−1 r + αn−1 + βn−1 −βn−1

γn−2 γn−1 γn


, (4.1)

where the definitions of the coefficients γn−2, γn−1 and γn depend upon the boundary
condition applied at Smax.

Letting σ(Si) ≡ σi, then using a FD approach we can define:

αi =
σ2
i S

2
i

2Di∆Si−1
− (r − q)Si

2Di
(4.2)

βi =
σ2
i S

2
i

2Di∆Si
+

(r − q)Si
2Di

(4.3)

where ∆Si = Si+1 − Si and Di = (∆Si−1 + ∆Si)/2. We will refer to a discretization
which defines αi and βi according to (4.2-4.3) as a central-weighted FD scheme.

The use of central differencing for the convection term in (4.2-4.3) can lead to
numerical artifacts when the governing equations become convection dominated. In
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this situation, the discretization should switch to using upstream weighting for the
convection terms. If αi < 0, the coefficients are defined as:

αi =
σ2
i S

2
i

2Di∆Si−1
(4.4)

βi =
σ2
i S

2
i

2Di∆Si
+

(r − q)Si
∆Si

, (4.5)

while if βi < 0, then these coefficients are given by:

αi =
σ2
i S

2
i

2Di∆Si−1
− (r − q)Si

∆Si−1
(4.6)

βi =
σ2
i S

2
i

2Di∆Si
. (4.7)

This ensures that αi, βi ≥ 0 and as a result, rows 1 through n − 1 in matrix A are
diagonally dominant. This central-upstream weighted FD discretization will be used
predominantly throughout the paper unless we specify otherwise.

In the case of single-factor options, for typical values of σ and r we find that
upstream differencing is only required at a small number of nodes, usually remote
from the region of interest. Consequently use of this low order upstreaming scheme
at a small number of nodes does not result in noticeably poor convergence as the grid
is refined. However, for multi-factor options it is often desirable to use a high-order
positive coefficient scheme [23]. We emphasize that in this paper our focus is on the
specification of the boundary conditions, not the discretization at interior points, and
we will not pursue these other discretization methods further in this work.

4.1. Discretization of the Boundary Condition. The spatial discretization
given by (4.1) depends on γn−2, γn−1 and γn, the discretization of the boundary
condition imposed at Smax. We now specify how these coefficients are defined for a
Dirichlet node, the linear condition and the PDE boundary condition.

Dirichlet Node Discretization. We can implement a Dirichlet node at the upper
boundary of the domain by setting γn−2 = γn−1 = γn = 0 in matrix A, given by
(4.1). (We remind the reader that we have assumed, for simplicity, that the Dirichlet
boundary conditions are time independent).

Linear Condition Discretization. If we use fully implicit timeweighting and one-
sided finite differences then equation (2.9) becomes:

V k+1
n − V kn

∆τ
= (r − q)Sn

(
V k+1
n − V k+1

n−1

∆Sn−1

)
− rV k+1

n . (4.8)

This boundary specification can be represented by choosing:

γn−2 = 0 (4.9)

γn−1 =
(r − q)Sn
∆Sn−1

(4.10)

γn = r − γn−1 . (4.11)

Looking at these coefficients we see that with the linear boundary condition the dis-
crete spatial operator, represented by the matrix A, is not guaranteed to be diagonally
dominant when r − q > 0, which is a realistic situation for the parameters r and q.
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Note that if A has properties diag(A) > 0, offdiag(A) ≤ 0, and rowsum(A) ≥ 0,
then I + ∆τA is an M matrix. If I + ∆τA is an M matrix then (I + ∆τA)−1 ≥ 0,
and hence it is straightforward to show that a fully implicit discretization is uncondi-
tionally stable.

The PDE Boundary Discretization. In [18] the authors propose a technique that
does not require any additional assumptions. This finite difference method involves
using one-sided derivatives for the spatial discretization of (3.1). We can implement
this technique at the upper boundary by choosing:

γn−2 = − σ2
i S

2
n

∆Sn−2(∆Sn−1 + ∆Sn−2)
(4.12)

γn−1 =
σ2
i S

2
n

∆Sn−1∆Sn−2
+

(r − q)Sn
∆Sn−1

(4.13)

γn = r − γn−1 − γn−2 . (4.14)

We can see that when σ = 0, this method is equivalent to the linear boundary condi-
tion described in the previous section, obtained by imposing VSS = 0 at the boundary.

5. Necessary Conditions for Stability. Recall that the semi-discrete repre-
sentation of the differential equation (3.1) is given by

∂

∂τ
V k = −AV k , (5.1)

where A is defined according to (4.1). The matrix A represents the discretization of
the spatial operator:2

L(V ) = −σ
2S2

2
VSS − (r − q)SVS + rV . (5.2)

By direct substitution, we see that L(S) = qS, implying that λ = q is an eigen-
value of this spatial operator corresponding to the eigenvector V = S. We remind the
reader that we are assuming that r > 0. If q < 0, the operator L has a negative eigen-
value and hence the partial differential equation (3.1) has an exponential growth.3

On the other hand, if q ≥ 0, then it can be shown that all of the eigenvalues of the
spatial operator L are real and non-negative. It would seem appropriate to attempt
to enforce these properties in the discrete spatial operator, A, as well. We define a
legitimate discretization of the spatial operator as follows:

Definition 5.1. A legitimate discretization of the spatial operator (5.2) has the
properties that if {λi} are the eigenvalues of the matrix A given by equation (4.1)
then:

1. Case q ≥ 0: All of the eigenvalues must satisfy Re(λi) ≥ 0.
2. Case q < 0: There is at most a single index ρ for which Re(λρ) < 0.

Remark 5.1. A legitimate discretization has the satisfying property that the
discrete spatial operator preserves certain spectral properties of the continuous spatial
operator.

2The matrix A was defined to be the negative of the usual spatial operator in order to simplify
certain proofs concerning the properties of the spectrum of this matrix.

3Although the dividend yield is never negative, setting q < 0 may be used to model the cost of
carry when pricing an option where the underlying is a commodity. Similar situations can arise when
valuing real options (see, e.g. [4]), although the parameters are interpreted in a different context.
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In Section 5.1 we prove that the linear boundary condition, used in conjunction
with the FD discretization given above, yields a legitimate discretization. However, we
are really interested in the stability of the discrete matrix operator B. The necessary
conditions for stability are closely related to the concept of legitimacy of the spatial
discretization.

Let the eigenvalues of B be denoted by {Λi}. We can relate the eigenvalues of
B with the eigenvalues of A for specific timeweightings. If λi is an eigenvalue of the
matrix A, then the corresponding eigenvalue of B for a fully implicit timestepping
strategy (θ = 1) is given by

Λi =
1

1 + λi∆τ
. (5.3)

For a Crank-Nicolson timestepping strategy (θ = 1
2 ), the corresponding eigenvalue of

B is given by

Λi =
1− λi∆τ

2

1 + λi∆τ
2

. (5.4)

In the remainder of this paper we will consider only fully implicit and Crank-Nicolson
timeweightings.

Strict stability of the timestepping method (3.7) implies that the following nec-
essary conditions must be satisfied [14]:

• |Λi| ≤ 1, ∀i ,
• If there is an eigenvalue such that |Λi| = 1 then, in order to avoid algebraic

growth, the algebraic and geometric multiplicities of this eigenvalue must be
the same.

We will find that the legitimacy of the spatial discretization will be directly related
to the necessary conditions for stability of the timestepping algorithm.

5.1. Legitimacy of the Linear Boundary Condition. We now show that
the FD spatial discretization (4.2-4.7) using the linear boundary condition (4.9-4.11)
is legitimate.

Theorem 5.2. Let r ≥ 0 and suppose that the matrix coefficients αi, βi are
given by (4.2-4.7) and the boundary coefficients γi are given by (4.9-4.11). If matrix
A represents the spatial discretization given in (4.1) then the discretization preserves
the eigenvalue λ = q and the remaining eigenvalues have a non-negative real part.

Proof. We begin by showing that this discretization preserves the eigenvalue
λ = q. By direct substitution, we see that if V = (S1, S2, . . . Sn)T , then AV = qV .
Thus q is an eigenvalue of the matrix A.

We define the parameterized matrix

A(h) = D + (A−D)h for h ∈ [0, 1]

where D = diag(A). As A(0) = D and A(1) = A, the eigenvalues of A(h) trace
continuous curves4 that join the diagonal entries to the eigenvalues of A. We let λi(h)
represent the path traced by the eigenvalue starting at the diagonal entry aii. We can

4See [1] for a proof that the eigenvalues of a matrix whose coefficients are parameterized over a
real interval are continuous functions.
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Gn

Im(z)

Re(z)
rq

λn

Fig. 5.1. A snapshot of some of the Gerschgorin disks and the conceptual paths traced by some
of the eigenvalues for some h < 1 in the case where r − q > 0. The disk Gn(h) is disjoint from the
remaining disks for h < 1. We show that the final location of the only eigenvalue which is contained
in the interior of this disk is given by λn(1) = q.

build a parameterized family of Gerschgorin disks for A(h) given by

G1(h) = {r}
Gi(h) = {z ∈ C : |z − (r + αi + βi)| ≤ (αi + βi)h} for i = 2, . . . , n− 1
Gn(h) = {z ∈ C : |z − (r − γn−1)| ≤ |γn−1|h} ,

as depicted in Figure 5.1. We remind the reader that the Gerschgorin Circle Theorem
states that each eigenvalue of A is contained in at least one of the Gerschgorin disks
Gi(1), and in the union of these disks, each connected region contains at least one
eigenvalue. Since αi, βi ≥ 0, we see that each of the disks Gi(h), for i = 1, . . . , n− 1
only contain points satisfying Re(z) ≥ r ≥ 0 for all h ∈ [0, 1]. We now investigate the
nth disk in several special cases.

Case r − q ≤ 0: In this case, Gn(h) contains only points satisfying Re(z) ≥ r. Since
the eigenvalues of A must lie in the union of the Gerschgorin disks when h = 1, we
have Re(λ) ≥ r ≥ 0 and the proof is complete.

Case r − q > 0: If we consider λi(h) for any i = 1, . . . , n− 1, then Re(λi(h)) ≥ r for
all h ∈ [0, 1). To see this, we note that

λi(h) ∈
n−1⋃
k=1

Gk(h) ∀ h ∈ [0, 1), i = 1, . . . , n− 1

where we have used the fact that Gn(h) is disjoint from the remaining disks if 0 ≤
h < 1. Suppose that Re(λi(1)) = r− ε for some ε > 0. This contradicts the fact that
λi(h) is a continuous function of h and hence we can conclude that Re(λi(1)) ≥ r ≥ 0
for all i = 1, . . . , n− 1. As a result, the only eigenvalue of the matrix A which could
possibly have a negative real part would be λn(1). We notice that q is contained
in the interior of the disk Gn(1), so λn(1) = q. Therefore, the eigenvalue λ = q is
preserved by the discretization and all the remaining eigenvalues have non-negative
real parts as they are bounded by Re(λ) ≥ r ≥ 0.

Corollary 5.3. Under the conditions outlined in the statement of Theorem 5.2
the spatial discretization, A, is legitimate.
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We now relate the concept of legitimacy with necessary conditions for stability of
the discrete equations.

Theorem 5.4. A legitimate FD discretization using the linear boundary condi-
tion satisfies necessary conditions for stability for fully implicit and Crank-Nicolson
timeweightings provided r > 0 and provided that when q < 0 the timestep restriction
∆τ < |1/q| is satisfied.

Proof. If we consider the case where q ≥ 0, a legitimate discretization has
Re(λi) ≥ 0, and consequently |Λi| ≤ 1. An eigenvalue where |Λi| = 1 occurs when
there is an eigenvalue of A given by λi = 0. In the proof of Theorem 5.2 we saw that
the FD discretization obtained in conjunction with the linear boundary condition has
at most a single eigenvalue such that Re(λi) < r. Consequently, if r > 0 the matrix B
can have at most a single eigenvalue where |Λi| = 1, which implies that the algebraic
and geometric multiplicities of this eigenvalue must be the same. As a result, when
r > 0 we see that legitimate discretizations of the spatial operator lead to fully im-
plicit and Crank-Nicolson timestepping algorithms that satisfy necessary conditions
for strict stability when q ≥ 0.

In the case when q < 0, the partial differential equation has an exponentially
growing mode, corresponding to V = S. In this case, according to Definition 5.1,
a legitimate discretization allows a single eigenvalue of A to have Re(λρ) < 0 and
this eigenvalue is given by λρ = q. Assuming ∆τ < 1

|λρ| , the matrix B will be
invertible (see footnote (1)) and (5.3) and (5.4) will admit a series expansion for this
eigenvalue. From the series expansion we see that legitimate discretizations allow a
single eigenvalue of B to have the form:

|Λρ| = 1 + C∆τ ,

for some constant C which is independent of ∆τ and ∆S. This is consistent with
necessary conditions for a weaker form of stability given in [14], which allows expo-
nentially growing modes but requires that they remain bounded for any fixed time
horizon as ∆τ → 0.

Assuming r > 0, the remaining eigenvalues satisfy |Λi| < 1, ∀i 6= ρ. Hence, when
q < 0, legitimate discretizations of the spatial operator lead to fully implicit and
Crank-Nicolson timestepping algorithms that satisfy necessary conditions for stability
consistent with the behavior of the governing differential equations.

The assumption that r is strictly positive appears to be a technical limitation
of the proof given above. In practice, even when r = 0 we do not observe algebraic
growth in the discrete solution.

Remark 5.2. Note that a legitimate discretization satisfies the necessary con-
ditions for stability. However, a non-legitimate discretization may also satisfy nec-
essary conditions for stability. For example, consider a case where q > 0. In this
case, suppose we have a non-legitimate discretization, where there is an eigenvalue
|Λρ| = 1 + C∆τ (where C is independent of ∆τ and ∆S). This discretization would
be stable, but the spectrum would be inconsistent with the spectrum of the continuous
PDE.

Remark 5.3. If the boundary condition VSS = 0 is also applied at S = Smin, and
one sided differencing is used for the VS term at S = Smin, then the above arguments
can be easily (although tediously) extended to show that Theorem 5.4 applies to this
case as well.

5.2. Non-Legitimacy of the PDE Boundary Condition. In the previous
section we showed that the linear boundary condition results in a legitimate discretiza-
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Fig. 5.2. Demonstration of inconsistent exponential growth for the PDE Boundary Condition.
When there are no dividends, the solution is known to be bounded by S −K ≤ V ≤ S as given by
the dotted lines. The contract is a European call option with K = $100, T = 10 years, σ = 50%,
r = 5% and q = 0%. The numerical computations used a 50 node asset price grid with constant
spacing and Smax = $500. A fully implicit time-weighting was used with constant timesteps of size
∆τ = .01 years.

tion and hence satisfies necessary conditions for stability. That is not the case for the
PDE boundary condition. Experimentally we observe that, even when q ≥ 0, the
matrix A representing the spatial discretization can have negative eigenvalues when
using the PDE boundary condition. To demonstrate that this method can introduce
exponential growth that is inconsistent with the governing equations, we consider
a long-term, T = 10 year, European call option on a relatively volatile stock with
σ = 50%. For this example, we use constant grid spacing and fully implicit time
weighting with constant timesteps.

In Figure 5.2 the inconsistent exponential growth described above is clearly visible.
When there are no dividends, the solution is known to lie between S −K ≤ V ≤ S,
as given by the dotted lines. We see that these bounds are satisfied in Figure 5.2(a)
when the linear boundary condition is imposed. In Figure 5.2(b) the PDE boundary
condition is used and the solution has drifted substantially outside of these known
bounds. In this example, we experimentally observe that the matrix A has a negative
eigenvalue given approximately by λ ' −.2209, and hence the necessary condition for
strict stability is violated. However, it is possible that the PDE boundary condition
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Boundary Specification
ODE Linear BC PDE BC Analytic

Refinement level Value at S = $100 ($)
1 66.42 66.41 72.62 67.32
2 67.26 67.25 67.54 ↓
3 67.31 67.31 67.32
4 67.32 67.32 67.32

Table 5.1

Effect of imposing various artificial boundaries on the numerical solution of long maturity
European call option with K = $100, T = 10 years, σ = 50%, r = 5% and q = 0%. The numerical
computations were performed on a grid with constant spacing with endpoints [0, Smax] using a fully
implicit timeweighting with constant timesteps. The first refinement level used: ∆τ = .01 years
Smax = $500, and had 50 asset price nodes. Subsequent refinement levels doubled Smax as well as
reducing the timestep size and grid spacing by factors of two. The ODE boundary condition is given
by (2.8).

could still be strongly stable, since legitimacy is a stronger condition than stability.
We see in Table 5.1 that the quality of the solution obtained near the exercise

price, S = $100, has also degraded when using the PDE boundary condition for
the first few refinement levels; i.e. when Smax is small. This is a relatively extreme
example, with high volatility and a very long maturity. In fact, if we estimate Smax
using equation (2.7), assuming that a three standard deviation event is negligible,
then this suggests that Smax ' 5000. Table 5.1 indicates that all methods get four
figure accuracy with Smax = 4000.

Note that we have used a very small Smax on the coarse grid in Table 5.1. One
should view these tests as carried out with somewhat extreme parameters. For typical
parameters it is often very difficult to detect problems when only looking at the com-
puted solution. From Table 5.1, it appears that the effect of the negative eigenvalue
in A is small (at S values of interest) if Smax is sufficiently large. However, we do
recommend that care be taken when using the PDE boundary condition.

6. Sufficient Conditions for Stability. As mentioned above, requiring that
the eigenvalues have magnitude less than one is a necessary condition for stability.
The spectrum of the evolution matrix can lead to unreliable stability estimates in
the PDE context where the size of the matrix grows as the grid is refined. Because
of the structure of the spatial matrix when the linear boundary condition is applied,
numerical range, energy methods and von Neumann analysis do not appear to be
applicable to this problem. Consequently, we must investigate the power-boundedness
of the matrix B. In the following, we use the maximum norm, ‖ · ‖ = ‖ · ‖∞, where:

‖v‖∞ = max
i
|vi|, ∀v ∈ Rn ,

and the associated induced matrix norm is:

‖B‖∞ = max
v∈Rn

‖Bv‖∞
‖v‖∞

= max
i

∑
j

|bij | .

We will use the notation Bkn to refer to the matrix B, of dimension n, raised to the
kth power.

We should point out that there are two tests of stability. One involves taking a
large number of timesteps of fixed size while the other involves keeping a fixed time
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k
1 10 50 100 250 1000

Timestep type n ‖Bkn‖∞
Fully implicit ∀n 1.00 1.00 1.00 1.00 1.00 1.00

51 2.42 1.63 1.00 1.00 1.00 1.00
101 2.70 2.19 1.34 1.00 1.00 1.00

Crank Nicolson 201 2.85 2.52 1.96 1.55 1.05 1.00
401 2.92 2.70 2.33 2.06 1.71 1.05
801 2.95 2.79 2.53 2.33 2.12 1.71
1601 2.97 2.83 2.63 2.48 2.34 2.12

Table 6.1

Power-boundedness of B using a Dirichlet node. The table gives ‖Bkn‖∞, where B is defined
according to (3.6) and n is the dimension of the matrix. The parameters used for this example are
r = .1, q = 0, σ = .2, ∆τ = .1. The grid used variable spacing and Smax = $250.

horizon and reducing the timestep size, thereby also taking an unbounded number of
timesteps. In the following we present results for computations using an unbounded
number of fixed size timesteps, for the VSS = 0 boundary condition. We also ran
numerical experiments where the timestep size was reduced and the time horizon was
kept fixed. For brevity, we only present the fixed timestep results. The results for a
fixed time horizon lead to the same conclusions.

Sufficient conditions for stability using a Dirichlet node. If a time independent
Dirichlet node is specified with fully implicit timestepping, then the matrix A in
equation (3.4) has the last row identically zero. Further, if αi, βi ≥ 0, in equation
(4.1), then (I + A∆τ) is an M-matrix, hence it is straightforward to show, using
maximum principles [12], that ‖V k+1‖∞ ≤ ‖V k‖∞, and hence strict stability follows,
with no restrictions on the timestep size. If a Dirichlet node value V (Smax) = Vd(t)
is time dependent, then the stability result is ‖V k+1‖∞ ≤ max(‖V k‖∞, |V k+1

d |).
In Table 6.1 we provide a demonstration of power-boundedness for the matrix B

given by (3.6) obtained using a Dirichlet boundary condition. When fully implicit
timestepping is used, we have proven that the discretization is strictly stable and we
can see that this is consistent with the results in Table 6.1 where ∀n, k > 0, ‖Bkn‖∞ =
1.

Using Crank-Nicolson timestepping, we no longer have an M-matrix and we can-
not use maximum analysis to guarantee stability. Using a Dirichlet node, the convex
hull of the Gerschgorin disks of A lies in the right half plane. From [8] this allows us
to guarantee algebraic stability in the sense that:

‖V k‖∞ ≤ Ck1/2‖V 0‖∞ for n, k > 0 (6.1)

where n is the number of nodes in the asset price grid, k is the number of timesteps
taken and where C is a constant independent of n, k, and V 0. This result holds
with no restrictions on the timestep size ∆τ , and for non-constant coefficients. Note
that the usual von Neumann analysis can only be applied if the PDE coefficients are
constants.

Although we are able to guarantee the weaker stability estimate (6.1) using nu-
merical range arguments [8], our numerical experiments indicate that the algebraic
growth, k1/2, does not occur in practice. If we scan across the rows of Table 6.1 we
see that as k →∞, ‖Bkn‖∞ decays. As a result, the largest values of ‖Bkn‖∞ occur in
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the left-most column, corresponding to k = 1. Scanning down the first column, as n
increases the maximum size of ‖Bkn‖∞ appears to be converging to a number around
3. This indicates that ‖Bkn‖∞ is bounded above by a constant that is independent of
k. Hence, we experimentally observe that the Dirichlet boundary specification results
in strong stability when Crank-Nicolson timeweighting is used, although using numer-
ical range arguments we were only able to guarantee algebraic stability. This subtle
distinction is important since the Lax Equivalence Theorem states that, for linear
problems, strong stability is a sufficient and necessary condition for the convergence
of a consistent discretization for all initial data. For a discussion on the relationship
of algebraic stability to the usual notions of stability and convergence see [5].

Stability using the linear boundary condition. When the linear boundary condition
is applied and r− q ≤ 0, the Gerschgorin disks of A all lie to the right of z = r in the
complex plane. Again calling on the numerical range results in [8] we can show that
the discrete operator B is guaranteed to be algebraically stable. The case r − q = 0
holds for options on futures contracts and r − q < 0 can occur in FX options, where
r and q represent the risk-free rates in the two currencies. Recall that this situation
corresponds to an outflow boundary condition as S → ∞ and the proper upstream
weighting is used for the convection term in this case.

In the situation where r − q > 0, when the linear boundary condition is applied
the numerical range arguments are not directly applicable. Looking at Figure 5.1, we
see that not all of the Gerschgorin disks lie in the stability region. Even if we collapse
these disks towards the convex hull of the spectrum, we require q to be positive and
bounded away from zero in order not to include any points with negative real part.
As a result, numerical range stability region arguments [8, 16] cannot be directly
applied to this problem to guarantee stability in the typical case when q = 0. As
mentioned previously, determination of sufficient conditions for stability in the case
where the discrete equations have non-constant coefficients, along with non-standard
boundary conditions, is a difficult task. In [15, 16], numerical methods were used
to show stability for a range of input parameters. We will follow a similar approach
here, and provide a numerical demonstration that the matrix B is strongly stable for
a variety of input parameters.

In Table 6.2 we provide a demonstration of stability for the matrix B given by
(3.6) when the linear boundary condition is applied. The results are quite similar
for both fully implicit and Crank Nicolson timeweighting. Scanning across the rows
of this table we see that for a fixed dimension n, ‖Bkn‖∞ is bounded as number of
timesteps increases. Scanning down the last column, we see that the power-bound
appears to be converging to some number slightly larger than 12 as the dimension of
the matrix increases. Since this constant is reasonably small, errors introduced during
the computations will not be amplified enough to noticeably affect the numerical
solution.

Variations in the market parameters. The numerical experiments given in Ta-
ble 6.1 and Table 6.2 provide a demonstration for a particular choice of market pa-
rameters r, q and σ with a given fixed ∆τ and grid spacing. We have performed
numerous other experiments, with different grid spacings and different timestep sizes,
and all have indicated that the family of matrices B generated by this discretization
using the linear boundary condition is power-bounded by a constant. To investigate
the effects of the parameters r and σ, in Figure 6.1 we plot the experimental bound for
‖Bkn‖∞, n, k > 0 as a function of r and σ. This experimental bound was obtained by
refining the grid, and thereby increasing the dimension n of the matrix, and increasing
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k
100 200 400 800 1600 3200

Timestep type n ‖Bkn‖∞
51 6.73 8.45 9.31 9.45 9.45 9.45
101 7.60 9.52 10.47 10.62 10.63 10.63

Fully implicit 201 8.09 10.12 11.12 11.28 11.28 11.28
401 8.35 10.43 11.47 11.63 11.63 11.63
801 8.49 10.60 11.65 11.81 11.81 11.81
1601 8.56 10.68 11.74 11.90 11.91 11.91
51 6.75 8.47 9.32 9.45 9.45 9.45
101 7.62 9.53 10.48 10.62 10.63 10.63

Crank Nicolson 201 8.11 10.13 11.13 11.28 11.28 11.28
401 8.37 10.45 11.47 11.63 11.63 11.63
801 8.51 10.61 11.65 11.81 11.81 11.81
1601 9.05 10.83 11.74 11.90 11.91 11.91

Table 6.2

Power-boundedness of B using the linear boundary condition. The table gives ‖Bkn‖∞, where
B is defined according to (3.6) and n is the dimension of the matrix. The parameters used for this
example are r = .1, q = 0, σ = .2, ∆τ = .1. The grid used variable spacing and Smax = $250.

n 401 801 1601 3201
‖Bkn‖∞, k > 0 160 320 640 1280

Table 6.3

Unbounded growth in ‖Bkn‖∞, k > 0 as the dimension of the matrix n→∞ when σ = 0 using
the linear boundary condition. Other parameters used for this example are r = .10, q = 0. ∆τ = .1
Fully implicit timestepping was used and the grid used variable spacing with Smax = $250.

k until the computed value of ‖Bkn‖∞ was unchanged to a precision that could not be
observed in the graph.

In Figure 6.1(a) we see that the power-bound on B is well-behaved and relatively
unaffected by (r, σ) when σ is sufficiently large. However, ‖Bkn‖∞ increases rapidly
for small volatilities as σ tends to zero. For a small fixed (but non-zero) σ we would
expect that imposing the condition VSS = 0 at a finite Smax would induce less error as
we increase the size of the computational domain [0, Smax]. In Figure 6.1(b) we have
increased the computational domain so that Smax is now $1000. We find ‖Bkn‖∞ is
less than that obtained with the smaller computational domain given in Figure 6.1(a)
where Smax = $250. This indicates that the stability behavior for small σ improves
as the size of the computational domain increases.

In the special case when σ = 0 we observe in Table 6.3 that the power-bound
continues to grow with the dimension of the matrix n. From Table 6.3, it appears
that for σ = 0, ‖Bkn‖∞ ≤ nC where C is independent of k and n. This indicates that
for the special case σ = 0, the discrete operator B is only algebraically stable.

However, in numerical experiments performed when σ = 0 we did not notice
instability in the actual numerical solution. Although round-off errors could excite
these modes, for a fixed mesh size the amplification of these errors is bounded. The
matrices given in Table 6.3 are larger than those which would arise in practical appli-
cations. In fact, the grid spacing near S = $100 is approximately one cent for the grid
with 3200 nodes. For these large matrices, the power-bound obtained when σ = 0 is
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Fig. 6.1. Power-boundedness of B as a function of r, σ. The plot gives C such that ∀n, k >
0, ‖Bkn‖∞ ≤ C where B is defined according to (3.6) and n is the dimension of the matrix. Other
parameters used for this example are q = 0 and ∆τ = .1. Fully implicit timestepping was used and
the grid used variable spacing.

roughly 103, indicating that errors may be amplified by approximately three orders
of magnitude. To explain why this growth does not become evident in practice, we
look at the lower right hand corner of the matrix Bkn, where n = 401 and k = 10000:

B10000
401 =



0 . . . 0 0
...

...
...

. . .
...

...
...

...
0 . . . 0 0 -76.00 76.00
0 . . . 0 0 -77.00 77.00
0 . . . 0 0 -78.00 78.00
0 . . . 0 0 -79.00 79.00
0 . . . 0 0 -80.00 80.00


The matrix is of this form because when σ = 0 we are essentially solving a convection
problem and after a large number of timesteps the solution depends only on the data
at the inflow boundary.
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The matrix shown above was used to estimate ‖Bkn‖∞, k > 0 in Table 6.3 when
n = 401. For this matrix, the maximum norm is 160, which was obtained by summing
the absolute values of the entries in the last row. To maximally excite this mode
requires an initial condition of the form

V 0 = (0, 0, 0, 0, 0, · · · , −1, 1)T ,

which would not occur in reasonable financial applications. In applications, since the
contractual payoff, V (S, T ), is nicely behaved and is discretized to generate the initial
condition, V 0, typically the quantity |V 0

n − V 0
n−1| would be small.

In fact, in practice V (S, T ) is usually asymptotically linear. In this important
special case, we see that |V 0

n −V 0
n−1| decreases linearly as the grid is refined. Our nu-

merical experiments in Table 6.3 indicate that the bounding constant grows linearly
as the grid is refined. These effects offset each other, explaining why the instabil-
ity is not observed in practice. This is consistent with the conclusions of the Lax
Equivalence Theorem which proves that strong stability is necessary and sufficient for
convergence for all initial data. Weaker algebraic stability yields convergence only for
certain initial data. For a further discussion of these results, see [5].

Although we have explored the case σ = 0 in some detail, it should be noted
that in practice, σ ≥ σ0 > 0. The case σ = 0 represents a situation where there is
no random component in the underlying stochastic process, which implies that the
financial asset evolves with no uncertainty. For the practical case where σ ≥ σ0 > 0,
the numerical results indicate that the discretization with a linear boundary condition
at S → ∞ is strongly stable. However, an interesting avenue for future research is
to investigate the stability of the linear boundary condition in higher dimensional
problems. For example, stochastic volatility models will include the case σ = 0 in the
computational domain.

Power bound for the PDE boundary condition. As a final test, it is interesting to
examine the power bound of B (equation (3.6) for the PDE boundary condition. For
a fixed timestep size, for some choices of model parameters, ‖Bkn‖∞ becomes exponen-
tially unbounded as k →∞ (see example in Section 5.2), since this discretization does
not satisfy the necessary conditions for a legitimate discretization. However, it would
appear from Table 5.1 that the PDE method does seem to give reasonable solutions if
the computational domain is sufficiently large, and the timestep size is small. Table
6.4 shows the experimental results for ‖Bkn‖∞ for a sequence of tests. On each test,
the expiry time is fixed, and the grid spacing and timestep size is halved on each
refinement. To keep this consistent with our previous tests, we fix Smax = 5000 for
all refinements. According to criteria (2.7) with m = 3, Smax ' 5000 is a reason-
able choice. These tests are then similar to the tests shown in in Table 5.1, except
that we keep Smax fixed. Table 6.4 shows with that for this refinement procedure,
‖Bkn‖∞ becomes unbounded as n, k → ∞ for the PDE boundary condition. Hence
the PDE boundary condition method is not stable, even for weak stability conditions
[14]. However, Table 6.4 does indicate that the PDE boundary condition method is
algebraically stable (linear growth in the power bound), if we carry out a grid refine-
ment for fixed T . Table 5.1 shows that this unbounded growth in ‖Bkn‖∞ does not
produce poor results, at least near the strike. Consequently, it would seem that for
practical grid sizes and timesteps, the effect of the amplification of round off errors
may be small.
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Expiry Time
Refinement Level 5 years 10 years

1 4525 17167
2 9025 34224
3 18024 68336

Table 6.4

‖Bkn‖∞ for the PDE boundary condition. Long maturity European call option with T = 10,
K = $100, σ = 50%, r = 5% and q = 0%. The numerical computations were performed on a grid
with constant spacing with endpoints [0, Smax] using a fully implicit timeweighting with constant
timesteps. The first refinement level used: ∆τ = .01 years Smax = $5, 000, and had 500 asset price
nodes. Subsequent refinement levels reduced the timestep size and grid spacing by factors of two,
while keeping Smax fixed.

7. Extension of Results to Other Option Pricing PDEs. If the transfor-
mation X = logS is used, then PDE (2.1) becomes

Vτ =
σ2

2
VXX + (r − q − σ2

2
)VX − rV . (7.1)

In this case, if we use the computational domain [Xmin, Xmax], then the condition
VSS = 0 becomes VX = VXX at X = Xmin, Xmax. Note that in this case, eX is an
eigenfunction of the continuous spatial operator, but not of the usual finite difference
discretization of equation (7.1). This contrasts to the case where if the equation is
discretized in the S coordinates, then V = S is an eigenfunction of both the continuous
and discrete operators. This means that the method used to prove that the VSS = 0
condition results in a legitimate discretization cannot be used if we use the X = logS
transformation. Nevertheless, it is possible to use more complex methods, such as
those described in [20] to show that this boundary condition applied to equation (7.1)
is legitimate.

Suppose that we have an underlying asset (such as an interest rate, or a commod-
ity) which cannot be stored at no cost. If

dS = a(S, t) dt+ b(S, t) dZ (7.2)

then standard methods can be used to give the value V (S, t) of a contingent claim on
S as the solution to

Vτ =
b2

2
VSS + (a− λb)VS − rV (7.3)

where λ is the market price of risk. This example would include the common situation
of mean reversion, i.e.

a = κ(θ − S) ; θ, κ ≥ 0 . (7.4)

In this case, if we have the condition

b → 0 ; S → 0
b ≤ C2S ; S →∞

a− λb ≥ 0 ; S → 0
a− λb ≤ 0 ; S →∞ (7.5)
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then it is easy to show that imposing VSS = 0 at S = Smax, and using one sided
differencing at S = 0, S = Smax results in a method which is unconditionally stable
if fully implicit timestepping is used, and is at least algebraically stable if Crank-
Nicolson timestepping is used. If the conditions (7.5) do not hold, then it would be
necessary to precisely examine the properties of a, b in each case to determine if the
methods in [20] could be used to determine if a legitimate discretization is obtained.

8. Conclusions. In this paper we have provided an analysis of the stability of
the linear boundary condition for the Black-Scholes equation. New financial contracts
are being continually invented. Imposing Dirichlet type conditions for each of these
new contracts would be a tedious complication in a software library. Use of the linear
boundary condition avoids this difficulty, and perhaps explains why the use of this
boundary condition is popular among practitioners. However, to our knowledge there
have been no studies which examine the stability of this boundary treatment.

We defined the notion of a legitimate discretization, which requires that the dis-
crete spatial operator preserves certain spectral properties of the continuous spatial
operator. It was shown that the legitimate spatial discretizations given in this paper
result in fully implicit and Crank-Nicolson timestepping algorithms that satisfy nec-
essary conditions for stability when r > 0. The linear boundary condition results in
a legitimate discretization for a FD method described in this paper.

We also provide a numerical example for which the PDE boundary condition does
not result in a legitimate discretization. As a result, the discrete equations can exhibit
growth which is not consistent with the governing equations. In our experience, we
observe that the PDE boundary condition can be applied to many situations without
introducing instability. However, we suggest that this asymptotic condition is applied
with care.

It is difficult to provide sufficient conditions which guarantee that the linear
boundary condition results in a stable discretization when r − q > 0. We provided
numerical examples which demonstrate that the linear boundary condition results in
a discretization that is power-bounded in a wide variety of situations, assuming that
the volatility is bounded away from zero, σ ≥ σ0 > 0. We also provided heuristic
reasoning that indicates why we might not expect to observe difficulties applying the
linear boundary condition, even in the extreme case when σ = 0.
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