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1 Introduction

In this paper we are concerned with the exponential
risk-sensitive version of the standard average cost cri-
terion for controlled Markov chains (CMC’s); see also
[3], [11], [5]. Our presentation is more mathematically
rigorous than that in |7], and our proof techniques are
more self-contained and perhaps more intuitive than
those in [3]. Furthermore, we extend some results in
[3], [7] to the countable state space case. In addition,
we consider optimization within the general set of ran-
domized policies, and not only within the restricted
class of Markovian deterministic policies. We model
risk sensitivity as being given by an exponential disu-
tility function U, (z) = (sgny)e”®, where + is the con-
stant risk-sensitivity coefficient, see [13], [7]. First, in
Section 2 we give the basic definitions and notation of
our model. Section 3 presents and briefly analyzes al-
ternative definitions of the EAC. Section 4 is devoted to
a more detailed discussion of Howard and Matheson’s
definition of EAC. Finally, in Section 4 we show that,
similarly to the risk-neutral case, the optimal EAC sat-
isfies an optimality equation; see also 3], [11].

2 The Model

Let us consider a discrete time, stationary, con-
trolled Markov chain (CMC) especified by the tuple
(X,A,P,c), where

a) X, the state space, is a countable set, say X =
{1,2,...}. The elements of X are called states.

b) A, the action (or control) set, is a finite set. The
set of admissible state-action pairs is defined as K :=
X x Al
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c) P, the transition kernel, is a family of transition
probabilities on X given K:

P={P(|=z,a):(z,a) € K}.
We will also denote pyy (@) := P(z’ | z,a).

d) ¢ : K — R is the one-stage cost function. We
will assume that ¢ is non-negative and bounded: 0 <
c(z,a) < K for some constant K € (0, 00)

The above defined CMC represents a stochastic dy-
namical system observed at times ¢t = 0,1,2,.... The
evolution of the system is as follows. Let X, denote
the state at time t € Ny, and A, the action chosen at
that time. If at decision epoch t the system is in state
X; = z € X, and the control A; = a € A is chosen,
then (i) a cost ¢(z,a) is incurred, and (ii) the system
moves to a new state X1, according to the probabil-
ity distribution P(- | ,a). Once the transition into the
new state has ocurred, a new action is chosen, and the
process is repeated. For more details, see [1], [6], and
[14].

We will use the following standard notation: II and
Hgp, respectively, denote the sets of (randomized)
admissible and stationary deterministic policies. The
(risk-null) average cost function due to a policy = € II
will be denoted by

#"(¢) := limsup %EZ' [i Ct:| 1

t=0

for i € X, where we denote for brevity C;
c((Xt, Ar))-

3 Defining an Exponential Risk-sensitive
(ERS) Average Cost Criterion -

For an Expected utility criterion, the value function
&, corresponding to a policy n is given by the ex-
pected value of a certain measurable functional defined
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on the space of sample paths: ®,(i) = ET[F], i € X,
where F' : Q@ — [—00,00], and © := (X x A)*. For
that type of criterion, the corresponding ERS version
can be defined as Ef [U,(F)] or U; ' EF [U,(F)], which
are respectively the expected disutility and the certain
equivalent of F' with respect to U,. Jaquette (8, 9]
analized the ERS criterion corresponding to the dis-
counted cost, F =Y _>°  B'C;, and Denardo and Roth-
blum ([2]) studied that corresponding to the total cost,

F=332Ct.

Clearly, the average cost ¢™ is not an expected utility
criterion. Thus, the point arises here as how to define
an ERS version of ¢". Now, take into account that the

numerical sequence  ET [ s Ct} in (1) may also be
written as ET [% Z;:Ol Ct] , and consider the disutility
function U, instead of the linear disutility Uy(z) = z.
Then, we can initially think of the following three in-

dex functions as candidates for the ERS version of the
standard average cost (1):

= hm nsup E’F {(sgn'y) exp ('y Z C, )} @

n—1

J (i) == limsup - E" {u (Z Cy)
J™ (i) :=limsupu,y_1< i l:,y( ZC’t )

fiEel}
J*(i,y) = limsup %U,;‘l {E" l:ll (Z Cy }

. 1
= limsup — log
n—oo Y

o
()

Remark 1 Note that in the first two above functions
we first introduce risk-sensitivity ( by considering the
ezxpected disutility and the certain equivalent of the total
cost up to time n in (2) and (4) respectively) and then
we take the average. Conversely, in (3) we first take
the average and then the certain equivalent. Observe
also that J™ and the function obtained from it consid-
ering expected disutilities instead of certain equivalents
induce the same order relation among policies, because
U; 1 s increasing. Thus, we disregard that possibility
at the outset. Next, we analyze the strengths and deffi-
ciencies of these alternative definitions.

=lim sup —— log

n—oo N7

3.1 Candidate 1: J".
First we will see that, at least in the interesting sit-
uations, (2) is a trivial function. Let’s consider the
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case v > 0. Let 7 € II and assume that ¢" (i) = a > 0.
Then there exists a sequence of positive integers {ny} T

co such that ;- Y k> YET[Cy] > ta. Thus, we have

1 nel 1 a
n—exp ¥ ZO ET[CY } > -;k—exp (’)’“2'7%) %%
t=

which implies that

—~1

S

t=0

1
limsup — exp

TL-— 00

Now, by Jensen’s inequality,

Jj-=

Lt o )| 2o [0

and we conclude that J™(i,7) = oo. Ky < 0, we
can show similarly that for every policy 7 such that
#™ (i) = a > 0, we have J™(3,7) = 0. Thus, 7 — J*
does not discriminate among policies.

Remark 2 The assumption ¢™(i) = a > 0 is not re-
strictive for the average cost criterion. If for some pol-
icy m it holds that ¢™ (i) = a =0, then ET[Y .o Ci] <
0. In that case, a total cost criterion is clearly more
adequate for the decision problem.

3.2 Candidate 2: J=.

By its form, J* seems to capture the essence of both
the average cost as a long-run behaviour performance
index and risk-sensitivity as sensitivity to randomness.
To gain more insight into the nature of (3), consider
the case of a pohcy m € II and an initial state 3 € X
for which lim 1 Zt_ C; exists and is equal to a ran-
dom variable D (Pf-a.e.). Then, applying the dom-
inated convergence theorem, we see that J"(i,v) is
just the certain equivalent of D with respect to U,.
In particular, when the state space is finite and ¢ is
a recurrent state under a stationary deterministic pol-
icy # = {f,f,...}, D is (almost surely) constant and
J™(i,v) = ¢™(i,7) Vy. The reduction of the risk-
sensitive index to the risk-neutral one in the previous
ergodic situation is intuitevely consistent with the fact
that randomness “disappears” in the long-run. That
appealing property of J™ might turn out to be also its
weakness, because ergodicity is, in general, the condi-
tion that allows the study of the long-run behaviour of
stochastic processes. Thus, it appears that this candi-
date holds little promise.

3.3 Candidate 3: J”.

This index function was introduced by Howard and
Matheson [7] in the particular context of a finite state-
action unichain model, and it has been widely accepted



in the literature as the ERS average cost [3], [11]. Re-
cently, it has been also studied in connection with ro-
bust control theory {3}, [11], [5]. A very appealing con-
sequence for this candidate is that useful optimality
equations can be obtained. In the next section we will
discuss some of the main properties and consequences
of using (4).

4 Howard-Matheson’s exponential average
cost criterion

Throughout this section we will make the two following
additional assumptions: :

Assumption 1: The state space is finiteX =
{17' b 7N}

Assumption 2: For every (f*) € Hgp, the
corresponding probability transition matrix Py =
(pi; (f())) is primitive.

For (f°) € Ilgp let us denote by Qs the matrix with
entries ¢;;(f) = e"f@p,;(f(i)). For the sake of
brevity let us also denote the exponential disutility and
certain equivalent of the total cost up to time n respec-
tively by Uf(i,~) and JJ(4,7), that is

Ur{(ia")’) = Ezf {uv (nil Ct):i N

t=0

and
JLG,y) =U7" (ULG,y) -

Finally, when 7 = f°°, we write J/ instead of J”,
and hence we may write definition (4) as JI :=
msup,,_, o =Ji (i,7)-

Under the previous assumptions, Howard and Mathe-
son [7] showed that the sequence JJ (i,7) actually con-
verges, is independent of the initial state 7, and

1
Jf(iafy) = hnéo ;;JV{(Zﬁ,Y)

(5)

= Zloga = J/(3)
y

where X is the dominant eigenvalue of the primitive
positive matrix @¢. The above limiting relation was
also established by Miller [12] to show (in terms of our
problem) that the sequence 2 3775 ¢(Xy, f(X:)) obeys
a large deviations principle.

Howard and Matheson also showed that if w =
(w(1),... ,w(N)) is the unique eigenvector correspond-
ing to A such that w(N) = (sgny) , then

i (TG0, 7) = LN )] = HE,)

Vi € X, where H(i,7) := U; ' (w(i)). The above equa-
tion says that the function H(-,~y) gives the relative
certain equivalents with respect to the state N. More-
over, since w is an eigenvector of (J; corresponding to
A, we have that

N
Mw(i) =Y g (Fw(s)
=1
Vi € X, or equivalently, on taking account of (5) and
the definition of H:

N
YT = Z i (f)e'yﬂ(i,'y) (6)
—

There is a clear resemblance between the above equa-
tion and the value equation for the risk-neutral average
cost, under the present assumptions,

N
&7 +R(i) =c(i, F@) + Y _pis(FGEDRG),  (7)
=1
where h is the corresponding relative value function,
(see for example [1].) In the proposition below we show
that the relation between equations (6) and (7) is in
fact closer.

Since we will consider just one fixed policy (f*°) € Ilgp
, for the sake of brevity we will remove the explicit
dependance on f in every term. Accordingly, we will
denote Pi;(f(i)) = pij, ¢(i,f(3) = (i), J7(G,7) =
J(v). On the other hand, we will introduce the explicit
dependence on the risk-sensitivity coeflicient v of the
eigenvalue A and the eigenvector w of equation (6).

Proposition 1 Under the Assumptions 1-2 we have
lim J(y) =¢ and lim H(y,i)=h({E) (8)
~—0 y-+0

Jor every i € X, where h is the relative value function
Jor the risk null case such that h(N) = 0.

Proof: : By denoting the eigenvector corresponding
to A(y) by w(y) = (w1(y),... ,wn(v)), and wi(y) :=
(sgrry)w. (2), we obtain from that equation, after mul-
tiplying both sides by sgn+y:

N

> " pi(Hus (e ™ = A()uily), 9)

J=1

7 € X. Now, u; and A are coutinuously differentiable
(in fact analytic) functions of v in a neighborhood of
v = 0 (see Kato [10, Ch.II].) Differentiating both sides
of the equation above with respect to v yields

N

i (et () + 5 (7)e(i)]e™°?,
j=1
= X (y)us(y) + AM)ui(v),
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and letting v — 0:

pr (f) hm U; (’7) + C(Z) hm uj ('7)]

j=1
1 ’ . . . - I )
= Zim N'(3) limy () + limy A(y) Jim o (49

Now, by letting v — 0 in the inequalities

Z pii (e <A g maxz pis{ (f)ered

_1——-1

(see [4, Vol. II, Ch. XIII]), we obtain

Lim A(y) = 1. (1
Moreover, also by taking the limit as v — 0 in both
sides in (9) yields

Py[lim u(y)] = lim u(7),

where u(y) = (u1(y),...,un(y)). Thus, the vector
v := lim,_.ou(y) is a right eigenvector of P; with re-
spect to the eigenvalue 1, that is, an invariant vector.

Furthermore, since vy = 1, we must have that 1; =1
for every ¢ € S, that is

lim u;(y) =1 (12)
7—0

By substituting (12) and (11) in (10), we get

ipij ) [ﬁg TAGORS C(i)}

i=1 (13)

Y ' . ’
= Lim X(y) + ling u;()-
Observe that ux(y) = 1 implies lim,_,o vy (7) =0

Since the solution (¢, h) with h(N) = 0 of the value
equation (7) is unique, we deduce from (13) that

¢ = lim XN (y) and h(i) = lim (7).
=0 y—0
Finally, the proposition follows by observing that

. 1
fim J(7) = 31;%;7-105/\(7)

X _ i
= lim 5% = lim X0,

and
. . .1
T, H(y, d) = lim = log(sgny)uwi(7)

u;(7)

— lim L logu;
Jfim, ~ ogu;(y) = Oum

= lim (7).
|

Howard and Matheson {7] also showed that under As-

sumptions 1-2, a finite policy improvement algorithm

can be applied to find a policy f*° € Hgp, optimal
among the set of stationary deterministic policies.

5 The Average Optimality Equation

In this section we consider again a CMC with countable
state space. '

Theorem 1 (Average optimality equation) :
Assume that there exist a > 0 and a bounded strictly
positive function h : X — R such that

(sgry)ah(i) = min {(sgn7)e?> Y pis(a)h(5)},
jEX

for every i € X. Then
. a1 L
Jof {J7G)} = - loga,

for every i € X. Purthermore, if for each i, f*(i) at-
tains the minimum on the right hand side of the above
equation, then the policy ™ = (f*, f*,...) € Pigp is
optimal, that is,

L] »* 1
Jﬂ‘ (377) = Jf (i77) = ;Ina7

for every i € X.

Proof: Assume that the pair (a,h) satisfies the
average optimality equation. Let w € II be an arbi-
trary policy and denote Sy = 0, S, C’t for
n = 1,2,.... First, we will prove the followmg two
statements:

i) (Sgnv)a"h(i) < (sguy) BT [ h(X.)]-

it) lim sup -~ Iog {EF [ewnh(X )]}

=

= lim sup 11 log { ET [e"5] }.

n—oo MY

Let’s prove (i) by induction on n. The validity of (i)
for n = 0 is clear. Now, from the optimality equation
we obtain that

(sgny)ah(X,) <

for every n =0, 1,...
erated by {Xo, Ag, - - -
ET [ET[(sgwy) €"*h(Xp) | Fa-1]]

= ET [¢75"* (sgny)e" " ET [M(Xa) | Fr-il]

> Ef [7° (sgny)ah(Xn-1)]

= o(sgn) ET [€7%" 2 h(Xn—1)]

= (sgny)a"h(7)

where the last inequality follows from the induction
hypothesis. Thus, (i) follows. To prove (ii), let

k1 :=sup{h(j)}, and ky := 1I]1f{h(_7)}

(sgny)e"“" ET [M(Xnt1 | Ful

, where F,, is the g-algebra gen-
, Xn, An}. Then
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Then,
k2 EF[e75] < EF[h(Xa)e"5"] < ky EF[e5-).

Now, if ¥ > 0,

L log ks + 1 log ET[e75"]

v Y

< :1; log ET [h(X,.)e5"]
< '1‘ 10g kl —+ —1— IogEZr[e’YSn]. (14)
v Y

Dividing by n, and taking lim sup, we obtain

11
limsup — S logE~ [e7%"]

n-sc0 T

= lim sup 1 % log EF[h(Xy)e"S"].
T

n—o0

If v < 0, the inequalities in (14) are just reversed and
we obtain the same limiting relation, thus proving (ii).

Finally, (i) implies that
1 1 . 1 s
;nloga + p logh(i) < p log ET [h{(X,)e™].

Thus, dividing by n and taking lim sup in both sides of
the above equation we obtain, by (ii),

1
p” log or < limsup 11 log E7 [e75] = J™(i,7),

n—oo N7
and therefore

1

—1 < inf : . 1

- loga Jnf {7 7)} (15)
To prove the second part of the theorem, let f* be
the decision rule that attains the minimum in the opti-
mality equation. By replacing A, with f*(X,,) in the

proof of (i) above, we obtain the equality in (i). Thus,
a similar argument as before yields

1 .
- IOga = Jf (7:’7)7 Vi,
7
which together with (15) ) implies that
£ s —_ .
4 i,7) = it {76}
Therefore, 7* = (f*, f*,...) is optimal. =

Similarly as in the risk-neutral average case, conditions

to ensure the existence of solution pairs (o, h) to the

optimality equation in theorem 2 need to be explored;
see [1], [5]. '
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