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ABSTRACT

The paper summarizes some important results at the
intersection of the fields of Bayesian statistics and
stochastic simulation. Two statistical analysis issues
for stochastic simulation are discussed in further de-
tail from a Bayesian perspective. First, a review of re-
cent work in input distribution selection is presented.
Then, a new Bayesian formulation for the problem
of output analysis for a single system is presented.
A key feature is analyzing simulation output as a
random variable whose parameters are an unknown
function of the simulation’s inputs. The distribution
of those parameters is inferred from simulation out-
put via Bayesian response-surface methods. A brief
summary of Bayesian inference and decision making
is included for reference.

1 INTRODUCTION

A decade ago, Glynn (1986) argued that ‘Bayesian
statistical methodology has an important role to play
in the theory and practice of stochastic simulation’.
At present, however, the number of contributions of
applying Bayesian techniques to problems in stochas-
tic simulation has been limited. Frequentist tech-
niques are predominantly employed for solving prob-
lems such as input distribution selection, input pa-
rameter selection, output analysis for a single simu-
lated system, selection of the best simulated system,
simulation model validation, and statistical issues re-
lated to variance reduction.

Still, there is a recent resurgence of interest in
Bayesian methodologies for problems in the analy-
sis of stochastic simulations. This interest has been
fueled, in part, by the impressive recent analytical
and computational research which has enabled the
implementation of Bayesian statistical calculations.
Further, the Bayesian approach provides an elegant
framework for modeling statistical problems.
This paper reviews some of the work done at the
intersection of the Bayesian statistics and simulation
communities, and proposes a Bayesian framework for
analyzing output of a single simulated system. A key
feature of the proposal is the inference of the entire
distribution of the simulation output, rather than a
focus on its mean. Issues such as model misspecifi-
cation and relationships to currently-used frequentist
techniques are also discussed.

2 BAYESIAN APPROACH

This section presents some general ideas in Bayesian
statistics and to serve as a reference for concepts used
in the remainder of the paper. A central concep-
tual difference between frequentist approaches and
Bayesian approaches is that the Bayesian framework
models all uncertainty in terms of probability distri-
butions. This includes unknown parameters. Sup-
pose θ is an unknown quantity, pΘ (θ) = fΘ(θ)dθ is a
prior distribution which represents uncertainty about
θ based on prior knowledge, and fX|θ(x) is the like-
lihood of observing x, assuming θ were true. Then
the posterior distribution of θ, given an observation
of the data x, is given by Bayes rule,

pΘ|x (θ) =
fX|θ(x) pΘ (θ)

K(x)
(1)

where K(x) =
∫

Θ
fX|θ(x)π (θ).

The value θ̃ which maximizes fΘ|xθ, is called a
maximum a posteriori estimate (MAP) of θ, and is a
Bayesian analog of the maximum likelihood estimator
(MLE). A Bayesian analog for confidence interval is
a set where the posterior probability of θ is maximal.

Hypothesis testing for a Bayesian is also treated
using random variables. Suppose a finite set of hy-
pothesis are proposed. Posit a prior belief that each
hypothesis is true, for example pH (H0). The data
x can be used to infer the probability that a given
hypothesis is true (e.g., pH|x (H0)).
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Bayesian statistics is often used in conjunction with
decision making where the objective is to maximize
the expected utility of a decision (see, e.g., Berger,
1985 or de Groot, 1970). This paper refers to the
mean of output values rather than expected utility,
as current work in stochastic simulation analysis gen-
erally focuses on estimation of means.

3 LITERATURE REVIEW

There are two important domains of literature in
which simulation and Bayesian statistics have been
discussed together. The first is the application of
Bayesian and decision-theoretic techniques to statis-
tical problems in the field of simulation. The second
is the use of simulation as a numerical tool for ap-
proaching problems in Bayesian inference. This pa-
per is primarily concerned with developments in the
first domain–Bayesian approaches to statistical prob-
lems involved with analyzing simulations. Much of
the analysis that this entails requires techniques from
the second domain.

3.1 Bayesian Techniques for Simulation

Applications of Bayesian techniques to simulation
problems can be classified into two related subareas:
the simulation of stochastic systems and the simula-
tion of deterministic, but unknown systems. For the
analysis of stochastic simulations the literature is not
extensive.

Stochastic simulations. Andrews and Schriber
(1983) appear to be the first to discuss modeling sim-
ulation output with a Bayesian formalism. They con-
struct a point estimator and a Bayesian confidence
interval for the mean of batch-run simulation out-
put. Specific assumptions include a Gaussian prior
for the mean, and a stationary Gaussian process with
autocorrelated output from batch to batch. An-
drews, Birdsall, Gentner, and Spivey (1986) investi-
gate Bayesian techniques for validation of simulation
output.

Glynn (1986) describes an attractive, general
framework for modeling a generalized semi-Markov
process (GSMP) when the parameters of the input
distributions are unknown (e.g., service times are ex-
ponential, with unknown rate µ). He notes that the
probability distribution of the output depends on the
prior distribution of the input parameters, and com-
ments on potential research directions.

Nelson, Schmeiser, Taaffe and Wang (1997) evalu-
ated several techniques for combining a deterministic
approximation with a stochastic simulation estima-
tor, among them a Bayesian analysis (Gaussian dis-
tribution) for a point estimator.

Wang and Schmeiser (1997) describe the use of
Monte Carlo simulation for a Bayesian analysis.
Additionally, they formulate a related optimization
problem to select a prior distribution satisfying cer-
tain desirable properties. In this respect, they per-
form a Bayesian robustness analysis for analyzing
Monte Carlo simulation output.

Chick (1996) addresses the problem of selecting
an appropriate input distribution (e.g., exponential,
gamma) using Bayesian hypothesis testing, as well
as the problem of parameter uncertainty for a given
input distribution. He also developed extensions to
Latin hypercube sampling to provide variance reduc-
tion even when the input distribution (and therefore
the number of parameters) is unknown.

Andradóttir and Bier (1997) discuss possible roles
of Bayesian analysis in model validation, and output
analysis with both normal and truncated normal dis-
tributions. They present results on importance sam-
pling when the parameters of input distributions are
unknown. A joint distribution for the input and out-
put parameters is discussed, but a number of analyt-
ical and practical difficulties were described.

Deterministic simulations. A different angle is
taken for the problem of applying Bayesian tech-
niques to deterministic computer simulations. The
problem is that a computer algorithm calculates a
function of certain inputs and provides a determinis-
tic output. Each evaluation of the algorithm is as-
sumed to be computationally expensive. Bayesian
techniques are used to infer the parameters of a postu-
lated functional form for the algorithm’s output. The
design of computer experiments to learn the shape of
the function is a central focus. Koehler and Owen
(1995) provide a review of techniques in this well-
explored area.

One formulation is the Kriging model, which as-
sumes that the unknown real-valued function is

Ξ(x) =
N∑
j=1

φjhj(x) + Z(x),

where the hj(·) are known functions, N is known, the
φj are unknown with a given prior, and Z(x) is a
stationary Gaussian random process with

Cov(Z(xi), Z(xj)) = σ2R(xj − xi)

Evaluations of Ξ at the points x0, . . . , xn and Bayes
rule are used to infer the values of the φj (and there-
fore Ξ) at other values of the input x.
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Currin, Mitchell, Morris, and Ylvisakir (1991) pro-
vide results for selecting points xi which provide max-
imal inferential power for a special case of the Krig-
ing model. Morris, Mitchell, and Ylvisakir (1993) ex-
tend the framework to accomodate simulation output
which returns derivatives of Ξ as well as Ξ for each
function evaluation.

Osio and Amon (1997) expand the problem to plan
computer experiments where several functions of dif-
fering levels of accuracy could be programmed, the
more simplistic models being quicker but less accu-
rate. They evaluate orthogonal arrays of computer
experiments, and select the array which gives the
maximum expected information gain. They iterate
with more refined computer models as necessary.

Chaloner and Verdinelli (1995) provide a thorough
overview of Bayesian experimental design in general.

3.2 Simulation for Bayesian Analysis

Bayesian statistics presents a number of challenges
for numerical analysis, notably for predictive infer-
ence when the denominator in Equation (1) is needed.
A recent survey paper (Evans and Swartz, 1995) in-
dicates that significant progress has been made using
five general techniques: asymptotic methods, impor-
tance sampling, adaptive importance sampling, mul-
tiple quadrature, and Markov chain methods. Simu-
lation techniques are therefore playing an important
role in making a Bayesian analysis computationally
tractable (Chen and Schmeiser, 1993).

Gilks, Richardson, and Spiegelhalter (1996)
provide a comprehensive review of many of
the theoretical, philosophical and practical is-
sues related to Markov chain Monte Carlo
(MCMC) techniques. The MCMC WWW site
(http://www.stats.bris.ac.uk/MCMC/) contains
a significant collection of references. Spiegelhalter
et al. (1996) provide a package called BUGS to
perform Bayesian inference via MCMC methods
(mailto:bugs@mrc-bsu.cam.ac.uk). The software
can be used to generate samples from posterior
distributions that arise in Bayesian analysis.

4 INPUT DISTRIBUTION SELECTION

Bayesian formulations for statistical distribution se-
lection have been applied to a number of fields
(Draper, 1995; Madigan and York, 1995; Kass and
Raftery, 1995; Raftery, 1995; Volinsky et al., 1996).
A central idea is that all uncertainty, including distri-
bution uncertainty, is to be represented by probabil-
ity statements. The formulation presented by Chick
(1996) can be summarized as follows.
Suppose that a statistical distribution and param-
eter for a sequence of random quantities is needed
for input to a discrete-event simulation of a dynamic
system, and some historical data ~yn = (y1, . . . , yn) is
available. Suppose that the data are believed to be
conditionally independent, given the statistical distri-
bution and parameter.

Set π (m) to be the prior belief that distribution m
is the correct distribution, m = 1, . . . ,M . (A com-
mon, but not necessary, choice for π (m) is 1/M .) Set
pΛm|m (λm) to be the prior belief that λm is the true
parameter, given the assumption that m is the correct
distribution.

Under these conditions, it is possible to determine:

p~Yn|m (~yn) =

∫
Λm

p (~yn | m, λm)pΛm|m (λm)dλm

pm|~yn (m) =
p~Yn|m (~yn)π (m)∑M
k=1 p~Yn|k (~yn)π (k)

(2)

pΛm|m,~yn (λm) =
p~Yn|m,λm (~yn)pΛm|m (λm)

pm|~yn (m)

Equation (2) describes the belief that a specified
distribution is correct, given the data, prior beliefs
about the correct distribution, and the assumption
that the correct distribution is to be found in the
original set of M proposed distributions. Several ap-
proximation methods exist for the above integral. Of
particular interest is the Laplace approximation,

pm|~yn (m) ≈

∣∣∣Σ̃m∣∣∣1/2p~Yn|m,λ̃m (~yn)pΛm|m

(
λ̃m

)
π (m)

(2π)−dm/2
∑M
i=1 pi|~yn (i)

where the approximation error is O(n−1), dm is the

dimension of λm, Σ̃−1
m = −D2 logp

(
λ̃m | m, ~yn

)
is

minus the Hessian of the log-posterior evaluated at
the MAP estimate λ̃m given m, and n is the number
of data points. Chick (1996) provides an example
where the approximation worked well.

The Σ̃m term is analogous to the information ma-
trix term used for providing confidence intervals for
the MLE of frequentist approaches (Leemis, 1995).

A review of work investigating the problem of au-
tomatically selecting an appropriate prior is given by
Kass and Wasserman (1996). A discussion of the
robustness of this selection process with respect to
poor choices of prior distributions is given by Berger
(1994). The problem of not including the correct dis-
tribution in the original set of distributions is dis-
cussed in Section 7. The probabilistic interpretation
of distribution correctness is not without its detrac-
tors. See for example Edwards (1994).
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5 OUTPUT ANALYSIS

Consider the problem of analyzing the output from
a single simulated system (see Chick, 1997, for an
extension to multiple systems). Focus here is on out-
put which is independent from simulation replication
to replication (batch mean output is not considered).
Curiously, simulation output data has traditionally
been handled quite differently than data for simula-
tion input distributions, in that much focus has been
on estimating means of output, rather than the as-
sessing the entire distribution using parameter es-
timation and goodness-of-fit techniques. (Although
Law and Kelton, 1991; Glynn, 1996, among others
discuss quantiles of simulation output.)

The entire output distribution can be important
to a decision maker (Law and Kelton, 1991; Banks
et al., 1996). From the distribution, any quantity
of interest can be deduced, including the mean, vari-
ance, other moments, quantiles, and other functionals
of the probability distribution.

In general, the form of the distribution function
and/or the values of the statistical parameters of the
output will be unknown to the simulation analyst.
On the other hand, there may be some intuition or
formal analysis indicating the form of the output dis-
tribution. Analytical methods may indicate that the
Gaussian or geometric or some other distribution may
be appropriate, without giving precise information re-
garding the parameters. For example, the number
in system of an M/M/1 in steady-state is geometric,
or some other quantity of interest may have a func-
tional central limit theorem indicating it will be close
to Gaussian. It is known, however, that the param-
eters of the output distributions are some unknown
function of the input parameters.

This thought process is depicted in Figure 1. For
clarity of exposition, we summarize under the as-
sumption that M = 1, and drop the subscript m.
A superscript r is used to emphasize quantities spe-
cific to replication r, and a subscript i indicates the
i-th coordinate of a vector.

1. A statistical parameter λr is selected by the sim-
ulation analyst (by sampling or other choice) for
replication r.

2. Random variates xr1, x
r
2, . . . (service times, rout-

ing decisions, . . . ) are generated from distribu-
tions depending on λr .

3. A random output or is generated.

4. The analyst assumes a parametric distribution
fOr |θr(o

r) to describe the output, where the un-
known θr may depend on λr.
Realizations

of Random

Inputs Simulated

System

Realizations

of Random

Outputs

Output

Parameters,

Distributions

QL X1,X2,..., f(X|L=l) O1,O2,... , f(O|Q=q)

q = X(l;f)

Input

Parameters,

Distributions

Figure 1: A Framework for Analyzing Stochastic Sim-
ulation Experiments (r is for replication number)

5. An unknown deterministic function Ξ maps in-
put to output parameters, θr = Ξ(λr ;φ), where
φ = (φ1, . . .φN ) are unknown parameters with
prior distribution pΦ (φ).

Λ,Θ,Ξ,Φ, and O may be scalar or vector valued.

Example 1. Consider the M/M/1 queue, with input
parameter λ = (λ1, λ2), setting the arrival rate to
be λ1 and the service rate to be λ2. Suppose that the
number Q in the system at time t is desired. Although
the distribution of Q can be determined analytically,
suppose we ‘guess’ that the output Oi = Qi comes
from a series of independent simulation replications
is geometric(θ), where θ is postulated to be of the form
θr = Ξ(λr ;φ) = φ1 + φ2λ

r
1/λ

r
2 + φ3λ

r
2/λ

r
1.

One decision theoretic formulation of the relation-
ships between simulation inputs and outputs is sum-
marized in Figure 2. The figure is drawn as a
Bayesian network, where probabilistic dependencies
are represented with arcs (Howard and Matheson,
1984). The figure represents that for replication r,
simulated variates Xr

i depend on the input parame-
ter Λ and uniform variates Urj from the simulator; the
output Or can be described in terms of parameters of
the output distribution Θ and the Xr

i ; and the out-
put parameters depend on Λ and Φ. In probability
terms, pΛ,Φ,Θ,U,X,O = pΛpUpΦpO|Θ,XpΘ|Λ,ΦpX|Λ,U
(some subscripts are omitted for clarity).

The relationship between Xr
1 , . . . and Or is too

complex to study analytically. This complexity is one
reason the system is simulated in the first place.

Figure 3 presents a simplified model obtained by
conceptually ‘integrating out’ U and X. The com-
plexity of random number generators and simulated
variates is captured only implicitly. This simplified
model, which represents pΛ,Φ,Θ,O = pΛpΦpO|ΘpΘ|Λ,Φ,
is the basis for the output analysis discussed in this
paper.

From Figure 3, pairs of simulation inputs and out-
puts can be used to infer the parameters φ of the map-
ping Ξ. Suppose that R replications are run with out-
put ~o = (o1, . . . , oR), and denote by ~λ = (λ1, . . . , λR)
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Figure 2: Approach One: Comprehensive Belief Net-
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Figure 3: Approach Two: Simplified Belief Network

the input parameters used during those replications.
The posterior distribution for φ is then

pΦ|D (φ) ∝ pΦ (φ)
R∏
r=1

fOr |φ,~λ(or) (3)

where D = (~o,~λ) represents the information learned
from previous simulation replications, and fOr |θr(o

r)
is the postulated distribution of the output or, given
the input λr , mapping parameters φ, and θr =
Ξ(λr;φ).

The posterior distribution on φ in Equation (3) in-
duces a posterior distribution on the output of future
replications. Further, for each fixed λ, the unknown
expected value of the output Ō(λ) = E[O | λ, φ] is
a random variable whose distribution can be deter-
mined with Equation (3).

pO|D,λ (o) =

∫
φ

fO|θ=Ξ(λ,φ)(o)pΦ|D (φ)

pŌ(λ)|D,λ (ō) =

∫
φ|E[o|Ξ(λ;φ)]=ō

pΦ|D (φ)

The distribution of Ō(λ) is important as it character-
izes the system uncertainty regarding the response
surface, and is distinct from systemic uncertainty
about input distributions (pΛ (λ)) and stochastic un-
certainty of the system (pO|D,λ (o)).

This can be though of as a Bayesian version of
metamodeling (see, e.g., Law and Kelton, 1991). The
current approach differs, however, as it infers a prob-
ability distribution for the output as a function of
inputs, in addition to estimating the mean of the out-
put. A distribution of parameters results, rather than
a point estimate of means. The mean of the out-
put can then be calculated is an integration problem,
rather than a simulation problem, once the output
distribution and parameter θ are known.

The approach is similar to the Kriging model in
that there is assumed to be a deterministic, but un-
known function, which maps input parameters to out-
put parameters. The approach is different from the
Kriging model in that the output of the simulation is
stochastic, rather than deterministic, and pO|D,λ (o)
represents uncertainty in the output rather than a
Gaussian process Z.

The current proposal can also be used for deter-
mining which of several proposed functions Ξi is best
supported by the data. See Ledersnaider (1994) for
a discussion of Bayesian response surface estimation,
and Chick (1997) for a discussion of Bayesian distri-
bution selection.

6 JOINT INPUT-OUTPUT MODEL

A joint probability distribution for input and output
parameters (Λ,Θ) can then be written

pΛ,Θ|D (λ, θ) = pΛ|D (λ) pΘ|λ,D (θ)

= pΛ

∫
φ

pΘ|φ,λ,D (θ)pΦ|λ,D (φ)

where pΛ,Θ = pΛpΘ|λ is the prior distribution.
The posterior for λ is written in terms of a non-

updated prior because under the assumptions, no in-
formation about the input parameter λ can be learned
by observing the simulation output for various values
of λ. The simulations give information about how
λ and θ are related, not about the value of λ most
appropriate for the real system.

An interesting research question is how one might
learn about λ, given certain ‘real-world’ data about
output and response variables, along with simulation
input and output data.

7 MISSPECIFIED DISTRIBUTIONS

For both input and output distributions, an assump-
tion was that the set of proposed distributions in-
cluded the correct distribution. What if this is not
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the case? How far off-base can the results be? This
section partially addresses these questions.

Suppose that O1, . . . are i.i.d. random variables
with probability distribution p′O (o), but that rather
than selecting p′O (o), the simulation analyst chooses
a distribution fO|θ(o) from the exponential family, for
some unknown θ, where

fO|θ(o) = F (o)G(θ)e
∑S
s=1 us(o)φs(θ) (4)

For example, the normal distribution falls into this
category because

f(o | µ, σ2) =
e−(o−µ)2/2σ2

√
2πσ2

=
1
√

2π

e−µ
2/2σ2

σ
e−x

2/2σ2+xµ/σ2

so that S = 2, F (o) = 1/
√

2π, θ = (µ/σ2, 1/σ2),
G(θ) = exp

[
−µ2/2σ2

]
/σ u1(o) = o, u2(o) = o2,

φ1(θ) = µ/σ2, and φ2(θ) = 1/2σ2.
The following theorem indicates that the MLE and

Maximum a posteriori (MAP) estimates of the pa-
rameter converge asymptotically to values closely re-
lated to the ‘true’ expectations of functions of the
random variables under general conditions.

Theorem 1. Let p′O (o) and fO|θ(o) be as above, and
suppose that E[|us(o)|] exists for s = 1, . . . , S, where
the expectations are with respect to p′O (o). Further
suppose that θ∗ is the unique maximizer of

G(θ) exp

[
S∑
s=1

E[us(o)]φs(θ)

]
.ψ (5)

Then the MLE θ̂ obtained from the misspecified dis-
tribution converges almost surely to the value of θ∗.
Further, the MAP converges to θ∗ as well for con-
jugate priors with non-zero probability in a neighbor-
hood around θ∗.

Proof. Set π0(θ) = K1G(θ)ae
∑S
s=1 bsφs(θ) to be a con-

jugate prior for θ. Then if ~xn = (x1, . . . , xn), the
posterior is

p (θ | ~xn) = K2G(θ)a+ne
∑S
s=1(bs+tj(~xn))φs(θ),ψ (6)

where the sufficient statistics ts(~xn) =
∑n
j=1 us(xj).

By the SLLN, limn→∞ ts(~xn)/n → E[us(o)] almost
surely. Then

d log p(θ|~xn)
n

dθ

n→∞
→

d logG(θ)

dθ
+

S∑
s=1

E[uj(X)]
dψj(θ)

dθ

(7)
almost surely. Under the assumptions of the theorem,
the maximum for both Equation (5) and Equation (6)
are zeros of Equation (7), and the MAP converges
appropriately. Set a = bs = 0 for convergence of the
MLE.

In particular, the result is true for the Gaussian
distribution. Assuming the output is Gaussian results
in an output which asymptotically matches the mean
and variance of the ‘true’ distribution.

More precisely, assume the output or is Gaussian
with unknown mean µ and precision τ . Use the
gamma-normal conjugate prior, with τ distributed
Gamma (α0, β0), and µ given τ distributed condi-
tionally Gaussian, N (µ0, n0τ).

Then the posterior distribution p (µ | D) of the ex-
pected value of the output µ has Student distribution

p (µ | D) ∼ St

(
µR, (n0 + R)(α0 +

R

2
)/βR, 2α0 +R

)
where St (µ, β, α) is the univariate Student distribu-
tion with α degrees of freedom, mean µ, variance
α/(β(α− 2)), and

µR =
n0µ0 +Rō

n0 +R

βR = β0 +
s

2
+
n0R(µ0 − ō)2

2(n0 + R)

ō =

Rk∑
r=1

or/R

s =
R∑
r=1

(or − ō)
2.

The Student distribution with similar parameters
(St (ō, R(R− 1)/s, R− 1)) is used to construct the
standard frequentist confidence interval for the mean.
The mean and variance for both the Bayesian and
frequentist Student distributions asymptotically look
like ō and R2/s, respectively. Although the inter-
pretation of the Bayesian posterior for the unknown
mean and the frequentist confidence interval have dif-
ferent interpretations, the above Gaussian approxi-
mation leads to similar results from a practical stand-
point.

8 CONCLUSIONS

This paper reviews the literature for Bayesian ap-
proaches to statistical problems in stochastic simu-
lation. In addition, some references were presented
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to related literature in the areas of Bayesian method-
ology in deterministic simulation, and the applica-
tion of simulation techniques to integration problems
which arise in Bayesian analysis.

This paper also presented a new formulation for
modeling output from stochastic simulations. The
work is motivated by two ideas. One, the entire distri-
bution of simulation output is often of interest (rather
than just moments) and two, the parameters of the
output distribution are some unknown function of the
input parameters. The approach advocated here is
distinct from, but related to, both the metamodeling
approach used in stochastic simulation analysis, and
the Kriging model used in deterministic simulation
analysis.

The framework makes explicit the differences be-
tween stochastic uncertainty (randomness inherent in
a system) and two types of systemic uncertainty (the
unknown distributions and parameters of the system;
and the unknown response of outputs with respect to
changes in inputs).

Given particular assumptions, the mean output can
be shown to be a random variable with Student dis-
tribution.

A number of research directions remain open to
a Bayesian analysis. These include: analysis of in-
dependent output for multiple systems, analysis of
batch mean output, development of tools for elicit-
ing reasonable prior distributions, analysis of approx-
imation issues related to ‘small samples’ versus ‘large
samples’, sensitivity and robustness analysis, theo-
retical and implementation work on experimental de-
sign problems for simulation replication analysis, and
evaluation of the importance of collecting more data
about inputs or running more replications to better
characterize the output.
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