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Abstract

The Ellsberg paradox demonstrates that people�s belief over uncertain events
might not be representable by subjective probability. We show that if a risk
averse decision maker, who has a well de�ned Bayesian prior, perceives an
Ellsberg type decision problem as possibly composed of a bundle of several
positively correlated problems - she will be uncertainty averse. We generalize
this argument and derive su¢ cient conditions for uncertainty aversion.

JEL classi�cation: D81
Keywords: Ellsberg paradox, rule rationality, ambiguity aversion, risk aver-
sion, subjective probability, reduction of compound lotteries.



1 Introduction

Daniel Ellsberg�s (1961, [8]) experiments demonstrate that for many indi-
viduals risk (known probabilities) and uncertainty (or ambiguity - unknown
probabilities) are two di¤erent notions. Ellsberg�s examples are direct criti-
cism of Savage�s [33] normative conception that uncertainty may be treated
similarly to risk, when subjective probability, which is derived from prefer-
ences, replaces the objective probability in the von Neumann-Morgenstern
theory of expected utility. In fact, the Ellsberg paradox is inconsistent with
Mark Machina and David Schmeidler�s �probabilistically sophisticated�pref-
erences [24] that generalize the idea of deriving subjective probability from
preferences. The existence of subjective probability is critical in Economics,
where its usage is pervasive. In many cases, not only do the results depend
on the existence of subjective probability, but without it de�ning the relevant
problem would become much more di¢ cult (if not impossible).
Consider Ellsberg�s �Two Urns�problem: there are two urns, each con-

taining 100 balls, which can be either red or black. It is known that the
�rst urn holds 50 red and 50 black balls. The number of red (black) balls
in the second urn is unknown. Two balls are drawn at random, one from
each urn. The subject is asked to bet on the color of one of the balls. A cor-
rect bet wins her $100, an incorrect guess loses nothing (and pays nothing).
The modal response exhibits uncertainty (ambiguity) aversion: the decision
maker prefers a bet on red or black drawn from the �rst urn to a bet on red
or black drawn from the second urn, but she is indi¤erent between betting
on red or black in each urn separately.
In this paper we consider a perturbation of the original experiment sug-

gested by Ellsberg, in which more than a single ball (a bundle) may be drawn
from each urn. We prove that in this regular environment, a risk averse de-
cision maker, who holds a Bayesian prior over possible states of the world,
and has to choose on which urn to bet, will be uncertainty averse. Further-
more, if the decision maker does not know with certainty the structure of
the environment (that is, if a single ball or a bundle will be drawn from each
urn), any small probability of a regular environment will lead to a decision
that exhibits uncertainty aversion. The explanation bounds the premium the
individual is willing to pay in order to discard uncertainty in favor of risk.
To relate our perturbed environment to the actual paradox, we use the

framework ofRule Rationality, which was suggested, among others, by Ronald
Heiner [21] and Robert Aumann [2]. This paradigm claims that people�s de-
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cision making has evolved to simple rules that perform well in most regular
(common) environments. Heiner [21] argues that rules arise because an agent
has limited cognitive abilities to identify the most preferred alternative in
every environment. Hence, she faces endogenous uncertainty in choosing the
optimal alternative and, under some conditions, is better o¤ restricting her
�exibility to simple alternatives that function relatively well in most environ-
ments. Although Heiner was motivated by Axelrod�s �ndings in the repeated
Prisoners�Dilemma, his claims are much more general. It should be empha-
sized, however, that although Heiner presents �rule rationality�as a case of
�bounded rationality,�this interpretation is not required for the current pa-
per. We only show that the rule of being uncertainty averse is rational in the
bundled (regular) environment, and do not derive an uncertainty averse rule
as a constrained rational choice. The application of the rule to the standard
Ellsberg paradox may be a result of bounded rationality (as Heiner argues)
or just irrational (due to inertia or error). Another prominent advocate of
�rule rationality� is Aumann [2], who restricts attention to repeated inter-
actions and contrasts strategies in repeated games with strategies in the one
shot game (what he calls Act Rationality). Motivated by empirical studies
of the Ultimatum Game (Güth et al [18]; Binmore et al [4]), Aumann argues
that the rule of rejecting low o¤ers has been determined in an evolutionary
process. This process rewards a behavior that utilizes a rule which works well
in most environments, i.e. it is optimal for a regular (in Aumann�s terminol-
ogy - repeated) environment. When applying the decision rule to a singular
(in Aumann�s terminology - one shot) environment1, the behavior may be
hard to rationalize.
The regular environment considered in this paper consists of a bundle

of several positively correlated risks. We argue that environments in which
people make decisions under uncertainty are frequently regular. An example
of a decision in such an environment is the purchase of a car. Suppose the
decision maker cares about the payo¤ distribution of the repair cost during
the �rst year after purchasing a car. These costs are the sum of repair costs
of the di¤erent components of the car. The repair cost of each component
is risky, but the risk that every component will malfunction during the �rst
year, depends on the state of the car (which depends, for example, on previous

1Either because the individual applies a decision rule which is already �hard wired�
into her decision making for similar (regular) environments, or she does not understand
the singularity of the basic environment.
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owners). The better the state of the car, the lower the probability that each
component will need repair. Hence, the repair costs of di¤erent components
are positively correlated. The decision is whether to buy the car (including
all its components) and to face the uncertain aggregate repair cost, or not.
Our metaphor for a risky environment is an environment in which the agent
knows the state of the car, and faces the randomness implied by mechanics.
In an uncertain (ambiguous) environment, the agent does not know for sure
the state of the car. She may have a prior belief over the state of the car,
but we show it does not collapse to the risky environment since one decision
(to buy the car) spans multiple risks that are correlated through the state of
the world (car). The above argument could be easily adapted to many other
decision problems, such as purchasing a house, getting married, choosing a
new working place and becoming a member in club.
In the following section, we present our resolution to Ellsberg�s �two urns�

paradox. Next, we generalize the example and establish formally the relation
between behavioral rules and uncertainty aversion, viz., we derive conditions
under which uncertainty aversion may be rationalized as a Bayesian rule
in an environment consisting of bundled risks. The paper concludes with a
discussion of the results, a comparison to the current literature on uncertainty
aversion and bounded rationality, and a conjecture concerning the relation
between uncertainty aversion and other behavioral anomalies.

2 A Bayesian Resolution of Ellsberg�s Para-
dox

This section demonstrates how the concept of �rule rationality�could be ap-
plied to the famous Ellsberg�s paradox, which motivates a substantial part
of the literature on uncertainty aversion. We use the �Two Urns� exam-
ple, which was presented in the Introduction. The �Single Urn�(with three
colors) example [8] could be treated similarly. Note that we use some simpli-
fying assumptions that are not necessary (the more general case is analyzed
in Section 3).
The decision maker - Alice - has learned from experience (though maybe

not consciously) that some circumstances are not isolated (singular), but that
frequently similar risks are bundled. The regular environment in which she
evaluates uncertain prospects consists of bundled risks. When asked which
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bet she prefers, she applies the rule that has evolved in this regular-bundled
environment. Our goal is to characterize the regular environment and analyze
the preferences the decision maker has in this environment. The original
Ellsberg experiment constitutes the singular environment in this paradigm.
For simplicity of the initial exposition, we assume the regular environment
consists of two Ellsberg singular experiments, which are perfectly correlated.
There are two type I urns (risky), and two type II urns (ambiguous). By
perfect correlation, it is meant here that the two urns have the same color
composition. Alice�s choice set consists of betting on one color from the (two)
risky urns, or on one color from the (two) uncertain urns2. Alice�s payo¤ is
the sum of her payo¤ in each draw.
The distribution of the monetary prize if Alice bets on red (or black) from

the urns with a known probability of 1
2
(urns of type I) is:

IR(2) = IB(2) =

8<:
$0 1=4
$100 1=2
$200 1=4

(1)

When considering the ambiguous urns, Alice might3 apply the statistical
principle of insu¢ cient reason4. Therefore, she has a prior belief over the
number of red balls contained in them, which assigns a probability of 1

101
to

every frequency between 0 and 100 (thus p; the proportion of red balls in the
ambiguous urns, is between 0 and 1): Conditional on p; the probability that
two red balls would be drawn from the ambiguous urns (i.e. winning $200
if betting on red) is p2; the probability of two black balls (i.e. winning $0 if
betting on red) is (1� p)2; and the probability of one red ball and one black
ball (i.e. a total prize of $100 if betting on red) is 2p(1 � p): According to
the Bayesian paradigm, Alice should average these values over the di¤erent
p in the support of her prior belief. Hence the probability of winning $200

2Alternatively, two balls will be drawn (with replacement) from each urn.
3None of the results depend on this assumption. As will be clear from section 3, all

that is required is that Alice will be indi¤erent between betting on red or black from the
type II urns. This is guaranteed by any symmetric prior.

4The principle of insu¢ cient reason states that if one does not have a reason to suspect
that one state is more likely than the other, then by symmetry the states are equally likely,
and equal probabilities should be assigned to them. The reader is referred to Savage [33]
Chapter 4 section 5 for a discussion of the principle in relation to subjective probability.
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and $0 is:

100X
i=0

1

101

�
i

100

�2
=

100X
i=0

1

101

�
1� i

100

�2
�=
Z 1

0

p2dp =
1

3
(2)

Therefore, the expected (according to the uniform prior) distribution of the
monetary payo¤ from betting on the ambiguous urns is:

IIR(2) = IIB(2) =

8<:
$0 1=3
$100 1=3
$200 1=3

(3)

It follows that IR(2) and IB(2) second order stochastically dominate IIR(2)
and IIB(2) (i.e. the latter two are mean preserving spreads of the former)5. If
Alice is averse to mean preserving spreads, she will prefer to bet on the risky
urns. Furthermore, if her preferences are represented by an expected utility
functional (with respect to an additive probability measure), then aversion
to mean preserving spreads is a consequence of risk aversion. Therefore, if
Alice is risk averse she will prefer a bet on the objective urns to a bet on
the ambiguous urns, and will exhibit uncertainty (ambiguity) aversion, as
observed in the Ellsberg experiment. If she is a risk lover, she will prefer the
latter to the former, and exhibit uncertainty love (also predicted behavior by
Ellsberg); whereas if she is risk neutral, she will be indi¤erent between the
four bets.
In the case of two draws and a uniform prior, but without dependence on

her risk aversion, Alice will prefer to bet on the ambiguous urns, rather than
bet on red from type I urns that contain anything less than 43 red balls.
The distribution of a bet on red from the type I urns that contain only 42
red balls is:

IR(2)

�
p =

42

100

�
= ($0; 0:3364; $100; 0:4872; $200; 0:1764) (4)

Hence, a bet on the uncertain urns would �rst order stochastically dominate a
bet on red from these risky urns. Thus the uncertainty premium (in terms of

5For formal de�nitions of �rst and second order stochastic dominance see [29] and
Appendix A.
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probabilities) is bounded from above by 8%. In monetary terms, this upper
bound is equivalent to $166:

E

�
IB(2)

�
p =

1

2

��
� E

�
IB(2)

�
p =

42

100

��
= $100� $84 = $16 (5)

The only assumption relied upon in this argument is monotonicity of the
preference relation with respect to �rst and second order stochastic domi-
nance. Therefore, this explanation is consistent with any theory of choice
under risk that exhibits aversion to mean preserving spreads, including ex-
pected utility with diminishing marginal utility of wealth, as well as most
non-expected utility theories of choice under risk.

The logic developed above extends to regular environments composed
of any number of bundled risks. Assume Alice compares the distribution
of betting on r concurrent IR (IB) to r concurrent IIR (IIB) as in the
Ellsberg experiment. The money gained is distributed 100X where X has a
binomial distribution with parameters (0:5; r) and (p; r) ; respectively. If p,
the proportion of red balls in the ambiguous urns, is distributed uniformly
on [0; 1] ; then for every 0 � k � r : 7

Pr fX = kg =
�
r

k

�
1

101

100X
s=0

� s

100

�k �
1� s

100

�r�k �= (6)

�=
�
r

k

�Z 1

0

pk (1� p)r�k dp =

�
r

k

�
Beta (k + 1; r � k + 1) =

=
r!

k!(r � k)!

k!(r � k)!

(r + 1)!
=

1

r + 1

That is, the expected distribution of IIR(r) and IIB(r) is uniform, and is
second order stochastically dominated by the binomial IR(r) and IB(r):

6These bounds depend on the uniform prior assumption. Assuming only symmetry of
the prior, the lower bound on the number of red balls in the type I urn would be 29.

7The Beta Integral is de�ned by:
Beta (m+ 1; n+ 1) =

R 1
0
pm(1� p)ndp = �(m+1)�(n+1)

�(m+n+2)

Where �(�) =
R1
0
p��1e�pdp for � > 0; and it is a well known result that when k is a

natural number: �(k) = (k � 1)!
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The only relation between the two ambiguous risks needed to justify
uncertainty aversion is a positive correlation. Let p1 and p2 be the rel-
ative frequencies of red balls in the �rst and second ambiguous urns, re-
spectively. It is simple to verify that if Corr (p1; p2) > 0 then E (p1p2) =
E ((1� p1) (1� p2)) >

1
4
; and therefore a bet on the ambiguous urns is a

mean preserving spread of a bet on the risky (known probabilities of 0.5)
urns.

Note that Alice does not need to assign probability one to the regular
(bundled) experiment in order to prefer a bet on the risky urns. In most
cases we do not know (or do not understand) with certainty the environ-
ment in which we have to make decisions. Alice might have learned from
her experience that some risks are bundled, but some are isolated. Even if
the probability of a correlated risk is very small, she would prefer a bet on
the risky (type I) urns. This is a consequence of a �Sure Thing Principle�
argument: if there is only a singular risk, she is indi¤erent between betting
on urn I or urn II; and in the case of bundling, she strictly prefers the for-
mer. Hence the conclusion that she prefers risk over ambiguity; even when
she faces the slightest possibility of a regular environment. Thus, in the case
of environmental uncertainties, the paradoxical Ellsberg choices may be fully
rationalized.8

3 The General Framework

The natural framework to generalize Ellsberg�s examples is Anscombe-Aumann�s
[1] horse bets over roulette lotteries, in which objective and subjective prob-
abilities coexist. In this section we de�ne the regular environment which
consists of bundled acts. We prove that if a decision maker is risk averse,
her preferences among bundled acts would exhibit �uncertainty aversion�
(Schmeidler [34]).

3.1 Uncertainty Aversion

Let X be a �nite set of monetary outcomes, R the set of �nitely supported
(roulette) lotteries over X ; and assume a preference ordering over R that

8Note, however, that as the probability of regular environment decreases, the uncer-
tainty premium will decrease as well.
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satis�es the usual expected utility assumptions. Therefore, there exists a
von Neumann-Morgenstern utility function u(�), such that lottery �1 is pre-
ferred to lottery �2 if and only if

P
x2X �1(x)u(x) >

P
x2X �2(x)u(x): Let S

be a �nite (non-empty) set of states of the world. In Ellsberg�s �Two Urns�
example, states of the world represent the number of red balls in the second
urn: S = f0; :::; 100g : An act (horse lottery) is a function from S to R: That
is, it is a compound lottery, in which the prizes are roulette lotteries. Let
H denote the set of acts. De�ne a convex combination over elements of H
as a pointwise mixture. That is, for every f; g 2 H and 0 � � � 1, the
holder of (f; �; g; 1� �) will receive in every state s 2 S the compound lot-
tery (f(s); �; g(s); 1� �) : Assume preferences over H satisfy independence
(Schmeidler [34]). As a result, if the decision maker is indi¤erent between f
and g, then she is indi¤erent between the two and the lottery (f; �; g; 1� �) :
An example of such statewise mixture in the �two urns�example is the com-
pound lottery

�
IIR; 1

2
; IIB; 1

2

�
: Assuming the decision maker abides by the

Reduction of Compound Lotteries Axiom (Segal [35], [36]), it is easy to ver-
ify that this compound lottery is equal to betting on IR. Since Alice is
indi¤erent between IIR and IIB, but prefers IR to either, her preferences
in Ellsberg�s example violate at least one of the assumptions: Reduction of
Compound Lotteries (Segal [35]) or Independence over H (Schmeidler [34]).
Schmeidler [34] was the �rst to de�ne uncertainty aversion, using the

Anscombe-Aumann framework. Formally:

De�nition 1 (Schmeidler [34]) A decision maker is Uncertainty Averse
if, for each pair of acts f and g, f indi¤erent to g implies that every convex
combination of f and g is preferred to f (and to g).

In Schmeidler�s [34] model of Choquet expected utility, this can be strict
only for acts that are non-comonotonic, as de�ned below:

De�nition 2 (Schmeidler [34]) Two acts f and g are comonotonic if for
no s; s0 2 S: f(s) � f(s0) and g(s0) � g(s):

In the context of Choquet expected utility it would be reasonable to de�ne
a decision maker to be strictly uncertainty averse if she prefers any convex
combination of every two non-comonotonic acts f and g; between which she
is indi¤erent, to f and g. In Ellsberg�s two urns example, IIR and IIB
are not comonotonic since the higher the number of red balls in the second
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urn, IIR becomes more favorable and IIB becomes less favorable. Hence,
strict preference of IR (=

�
IIR; 1

2
; IIB; 1

2

�
) to IIR is an evidence of strict

uncertainty aversion.
It should be noted that the same de�nition of uncertainty aversion is em-

ployed by Gilboa and Schmeidler [15] as one of their axioms in deriving the
Maximin Expected Utility representation. However, in the MEU representa-
tion uncertainty aversion may be strict even for some comonotonic acts (for
a characterization of the set see Ghirardato, Klibano¤ and Marinacci [12]).

3.2 The Regular Environment

Uncertainty averse behavior is explained intuitively as the agent �hedging�
between two acts. However, in the Ellsberg examples, there are opportunities
for �hedging� that are in some sense stronger than those entailed by non-
comonotonicity alone. In these experiments, the lotteries assigned by IIR
and IIB are ranked according to First Order Stochastic Dominance criterion
in every state in which they di¤er. That is, every agent with monotone pref-
erences would prefer IIR(s) to IIB(s) if 51 � s � 100 and IIB(s) to IIR(s)
if 0 � s � 49. Hence, we can compare the agent�s utility from di¤erent acts
at a speci�c state. Therefore, the hedging behavior could be interpreted
as more fundamental, and independent of the agent�s utility function. This
distinction is critical in the framework of �bundled acts.�
Let X , R, S and H be de�ned as above.

De�nition 3 Acts f and g in H are Statewise Ranked by First Order Sto-
chastic Dominance if f 6= g and at every state s in which they di¤er f(s)
First Order Stochastically Dominates (FOSD) g(s) or vice versa.

We prove that if preferences are de�ned over bundled acts in the regular
environment (with more than a single lottery at every state), a seemingly
uncertainty averse behavior emerges, when the original acts are Statewise
Ranked by FOSD.

De�nition 4 A Bundled Act f(r) is a function from S to the sum (convolu-
tion) of r > 1 independent and identical lotteries over outcomes. The set of
all bundled acts is the Regular Environment and is denoted by H(r).

Note, that according to De�nition 4, the set of acts, H; constitutes the
Singular Environment in this setting. In the regular environment, every
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state, s, is assigned a �bundle� of lotteries. In the formal de�nition, we
assume that conditional on the state, lotteries are independent and identi-
cally distributed. That is, the bundle consists of r independent draws from
one lottery (denoted by f (s)). To relate De�nition 4 to our resolution of
the Ellsberg experiment presented above, note that a bundled act (in the
regular environment) bundles a bet on all the type II or type I urns. The
condition that the lotteries are conditionally (on the state) independent and
identically distributed is a generalization of the �same color composition�
in the type II urns. For example, the bundled act IIR(2) assigns to every
state (frequency of red balls in the type II urns) the sum of two independent
draws from the ambiguous urns. Relating to the car example presented in
the introduction, the regular environment captures the idea that for a given
car condition (state) the risk associated with the state of the transmission is
independent of the risk associated with the state of the engine. That is, the
correlation is generated by the state of the car. The dimensionality of the
regular environment is indexed by r: Consider the agent�s preferences over
the regular environment. She is indi¤erent between the bundled acts f(r) and
g(r) if:

U
�
f(r)
�
= U

�
g(r)
�

(7)

Denote by q (s) the subjective probability of state s: Then (7) can be written
explicitly as: X

s2S
q(s)E

�
u
�
f(r) (s)

��
=
X
s2S

q(s)E
�
u
�
g(r)(s)

��
(8)

where E
�
u
�
f(r) (s)

��
is the agent�s expected utility from the sum of r (ob-

jective) lotteries that f assigns to state s: In what follows we take r = 2 (it
will be su¢ cient to produce uncertainty averse behavior): Then:

E
�
u
�
f(2) (s)

��
=
X
x2X

X
y2X

f (s) (x) f (s) (y)u(x+ y) (9)

where f (s) (x) and f (s) (y) are the probabilities of outcomes x and y respec-
tively, according to the objective lottery f (s).
The following Theorem gives a generalization of our main result. If the

acts satisfy De�nition 3, as the Ellsberg examples do, and preferences are de-
�ned over the regular environment (i.e. bundled acts), �uncertainty aversion�
is a consequence of a Bayesian prior and risk aversion.
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Theorem 1 If f and g are Statewise Ranked by FOSD and the agent is
indi¤erent between the bundled act f(2) and the bundled act g(2), then if she is
averse to mean preserving spreads and her preferences are representable by an
expected utility functional, she will prefer the bundled act of (f; �; g; 1� �)(2)
over the bundled act f(2) for every 0 < � < 1.

Proof. See Appendix.

To gain intuition that motivates the Theorem, let h(2) be (f; �; g; 1� �)(2) :
That is, the bundled act where in state s the decision maker receives two inde-
pendent draws from the lottery (f (s) ; �; g (s) ; 1� �) : The two draws from
the lottery h will both come from f with probability �2 and both from g with
probability (1� �)2 : Since f(2) � g(2); the agent�s expected utility from h(2)
conditional on either event is equal to her conditional expected utility from
f(2): Hence the comparison between h(2) and f(2) hinges entirely on whether
h is better or worse conditional on the event that one draw comes from f
and one from g: Since f and g are Statewise Ranked by FOSD, one draw
from each distribution is less risky (on average) than two draws from one, so
every risk averse agent will prefer h:

The implication of Theorem 1 is that if the perception of a risk averse
agent is that a decision will span multiple ambiguous risks, and the acts sat-
isfy the condition of Statewise Ranking by FOSD, then her observed behavior
would exhibit uncertainty aversion.

Uncertainty averse behavior may be fully rationalized if the individual
assigns a small probability that the environment she is facing is regular.
The source of this belief is the agent�s experience that some environments
are regular and some are singular. Confronted with a new situation, if the
individual�s heuristic belief assigns some (possibly small) probability to the
possibility she faces a regular environment, then her optimal behavior would
exhibit uncertainty aversion.

Corollary 1 Assume f and g as in Theorem 1, and suppose the individual is
indi¤erent between the acts f and g too: Then, for every � > 0 probability of a
regular environment, she will prefer a lottery between the two acts (or bundled
acts - with probability �) over each act (or bundled act - with probability �).

Proof. Since (f; �; g; 1� �)(2) � f(2) and (f; �; g; 1� �) � f; it follows from
the independence axiom that:

11



h
(f; �; g; 1� �)(2) ; �; (f; �; g; 1� �) ; 1� �

i
�
�
f(2); �; f; 1� �

�
The Corollary may be interpreted as a learning argument in the develop-

ment of a rule. Since the agent is indi¤erent between the two singular acts
f and (f; �; g; 1� �), the bundled acts f(2) and (f; �; g; 1� �)(2) serve as
�tie-breaking�. Hence if the agent develops one rule to decide in similar en-
vironments (where the regular and the singular environments are considered
subjectively similar), this rule will choose (f; �; g; 1� �) :

3.3 Are the conditions necessary?

Theorem 1 shows that when f and g are statewise ranked by FOSD then
preferences over bundled acts will exhibit uncertainty aversion. The fol-
lowing example shows that when this condition is not satis�ed, uncertainty
aversion or uncertainty loving among bundled acts may result (depending
on the speci�c utility function). Hence, this condition alone is not necessary
for uncertainty aversion among bundled acts. It is left for future research to
fully characterize preferences on this domain.
Let the utility function be:

u (x) =

�
x x � 


 x > 


(10)

for some 
 > 0. Assume two states of the world s; t with equal subjective
probability. The two acts f; g are:

f (s) = g (t) =

�
3 0:5
2 0:5

f (t) = g (s) =

�
4 0:5
1 0:5

(11)

The two acts are non-comonotonic (the state-lotteries are ranked by second
order stochastic dominance) for 1 < 
 < 4 and the individual is indi¤erent
between them. Therefore, uncertainty aversion would claim she prefers the
mixture of the two over each act separately. However, a short calculation
shows that our explanation of preference over bundled acts may or may not
support uncertainty aversion in this case, depending on the parameter 
. If
1 < 
 6 2 the individual is indi¤erent between f(2) and (f; 0:5; g; 0:5)(2) ;
while if 2 < 
 < 4 the individual prefers the latter bundled act to the former
(that is, exhibits uncertainty aversion).
A utility function that exhibits strict uncertainty loving for the above acts is

12



given by:

u (x) =

8<:
x x 6 3
x+3
2

3 < x < 5
4 x > 5

(12)

Here, U
�
f(2)
�
> U

�
(f; 0:5; g; 0:5)(2)

�
:

The intuition that motivates the above examples is that in the absence of
statewise ranking by FOSD, diminishing marginal utility of wealth does not
impose enough restrictions on the preference over bundled acts to imply
ambiguity aversion.

4 Discussion and Conclusion

This work shows that a perturbation of the Ellsberg paradox�s environment
leads to uncertainty averse behavior which is consistent with expected utility
theory and Bayesian rationality. If one uses �rule rationality,�then human
behavior may exhibit insensitivity to the details of the environment, and
uncertainty aversion becomes a very plausible prediction even in the standard
environment.

4.1 Comparison with the Literature

The Ellsberg paradox motivated an extensive literature that tried to explain
this predicted behavior. In this section we shall discuss only few alternative
resolutions.
The Maximin Expected Utility (MEU) model, which was axiomatized by

Gilboa and Schmeidler [15] and Casadesus-Masanell, Klibano¤ and Ozde-
noren [6], derives from individual�s preferences a convex set of priors. The
decision maker chooses the act that maximizes her expected utility if the
worst prior, included in the set of priors, occurs (Maximin over a convex set
of priors). Note that MEU does not imply extreme pessimism, since the set
of priors itself is endogenously derived from preferences. Hence conservatism
in the Maximin framework is measured by the size of this set. For example,
the set [0; 1] corresponds to extreme pessimism, while smaller sets correspond
to more moderate conservatism. Schmeidler [34] and Gilboa [14] derived the
Choquet expected utility representation, which is a special case of the Max-
imin if the capacity is convex. Uncertainty Aversion was �rst de�ned in this
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context. We point out that the preferences over bundled acts suggested in
this paper, and the MEU are two distinct representations, and are not equiv-
alent. The following thought experiment may sharpen the di¤erence (beyond
the example in the previous section):
Suppose a third urn containing 100 balls (red or black) is added to the original
two urns in the Ellsberg example. The composition of this urn is determined
by lottery that assigns probabilities 0 6 �j 6 1 that the number of red balls
is j = 0; : : : ; 100 and

P100
j=0 �j = 1. Furthermore, assume � is symmetric,

that is: �100�j = �j: The subject is asked to bet on the color of a ball drawn,
before she knows the result of the lottery �: Note that urn III is completely
objective and is composed of two-stage lotteries. According to MEU, the
decision maker should be indi¤erent between betting on the �rst urn (known
50-50 composition) and the third, and as long as the set of priors is sym-
metric and non-singleton, a bet on either should be preferred over a bet on
the ambiguous (second) urn. This is a result of the �reduction of compound
lotteries� assumption, included in the expected utility treatment of objec-
tive uncertainty (risk) within MEU. According to the theory of preferences
over bundled acts proposed here, the subject will rank the �rst urn highest
(as long as the subjective and the objective priors are not a point mass on
a composition of 50-50), and then rank urns II and III according to the
dispersions of q (the subjective prior on urn II) and � (the objective prior
on urn III): For example, if �0 = �100 = 0:5, all risk averse individuals will
weakly prefer the ambiguous urn over the third urn. The above predictions
may enable us to compare empirically between the theories.
As shown in the above thought experiment, the theory presented in this

paper allows for an aversion to known second order probabilities, through the
bundling e¤ect. This main feature of our theory is present in Uzi Segal�s [35]
work as well. He analyzes ambiguous prospects as two-stage lotteries (similar
to the framework here): �rst a probability is chosen according to some prior
belief distribution, and then a second lottery is performed. Segal relaxes the
Reduction of Compound Lotteries Axiom, and replaces the one stage Mix-
ture Independence with Compound Independence (Segal [36]). This allows
him to consider utility functions that are more general than expected util-
ity. An ambiguous lottery is evaluated by replacing each second-stage lottery
with its certainty equivalent. Segal shows that for Anticipated Utility9, risk
aversion and reasonable restrictions on the transformation of probabilities

9Similar analysis could be done for other non-expected utility functions.
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function, may rationalize the Ellsberg paradox. Hence, both theories share
the causation between risk aversion and uncertainty aversion. However, these
are di¤erent explanations: Segal�s theory relies on non-expected utility. Both
the second and �rst stage lotteries are evaluated according to a non-expected
utility model. If the utility function would be linear in probabilities, the am-
biguous lottery would give the same payo¤ as its expected risky counterpart.
Under the theory presented here, the lottery at each state is replaced by the
sum (convolution) of two conditionally independent lotteries, which we call
regular act. Even if the convolution is evaluated using expected utility func-
tion (as in Section 3), the convolution operator itself makes the evaluation
of the second stage non-linear in probabilities, and leads to the violation of
the reduction axiom. More speci�cally, the bundling e¤ect causes the payo¤
at the second stage to be a quadratic function of the probabilities:

U
�
IIR(2)

�� p� = p2 [u (200)� 2u (100) + u (0)] + (13)

+ 2p [u (100)� u (0)] + u (0)

Monotonicity and risk aversion imply that this is a concave function of p.
Since the �rst stage is evaluated using expected utility (which is linear in p),
the concavity in p implies that the decision maker will be averse to mean
preserving spreads in p: If one calculates an expression similar to (13) for
an arbitrary prize x; then @U

�
IIR(2)

�� p� =@x = 2p2u0 (2x)+2p (1� p)u0 (x).
That is, the weight attached to the marginal utility at 2x is higher than
the weight the consequence 2x receives in calculating (13). Furthermore, the
second derivative of (13) assigns even a higher weight to u00(2x):
To compare these �ndings to Segal, note that the expression correspond-

ing to (13) in Segal is:

V (IIRj p) = v (0) + [v (100)� v (0)] f (p) (14)

where v (�) is the decision maker�s cardinal utility index, and f (�) is her
decision weights function satisfying f (0) = 0 and f (1) = 1: It is easy to
see that the curvature of (14) as a function of the prize is determined by
the curvature of v at the prize. Unlike the bundling model, the �rst stage
evaluation in Segal�s model is not linear in probabilities. Segal [35] derived
su¢ cient conditions on f (�) that will generate Ellsberg type behavior. Those
conditions are slightly stronger than risk aversion in the theory of anticipated
utility, and are related to conditions that can generate Allais type behavior
using this functional form.
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The two theories (Segal [35] and the bundling theory presented here) have
di¤erent predictions for the thought experiment presented above (using a
third urn). A decision maker who follows Segal�s theory would be indi¤erent
between the risky (�rst) urn and a third urn with extreme dispersion of
�0 = �100 = 0:5. Another decision maker who has preferences over bundled
acts as this paper suggests, and is risk averse, will strictly prefer the �rst urn
to the third extreme urn, and will weakly prefer the ambiguous urn to the
extreme urn. In an experiment conducted by Halevy [19] he found strong
experimental support for both pattern of choices in the population. Yates
and Zukowski [41] considered a similar third urn with a uniform �: They
found that, on average, subjects valued urn I more than urn III; and urn
III more than urn II10.
Recently, Ergin and Gul [11], Klibano¤ et al [23] and Nau [27] developed

Segal�s [35] approach, focusing on the violation of the reduction axiom in
explaining ambiguity aversion. Although the goals of the three papers are
di¤erent they all assume that the decision maker has a prior belief over
the possible realization of the probability distribution, but since she does
not reduce probabilities between this stage and the second stage in which
objective lotteries are performed, it allows to capture her ambiguity attitudes.
Nau [27] emphasizes that the utility could be state dependent, Ergin and Gul
[11] allow for probabilistically sophisticated preferences and Klibano¤ et al
[23] concentrate on expected utility valuation without imposing reduction.
It is of interest to study the degree of risk aversion implied by the pro-

posed theory of bundling. For simplicity, consider an arbitrary lottery (with
no ambiguity) p: Let c(p) be the certainty equivalent of p de�ned by the
implicit relation: p � �c(p) were �x is the degenerate lottery that pays x
with certainty. Now consider bundling two such lotteries, and compare the
certainty equivalent of the bundled lottery to the certainty equivalent of the
original lottery 11. If u (�) is exponential - that is, exhibits constant absolute
10Yates and Zukowski [41] averaged minimum selling price of a chosen lottery, for dif-

ferent individuals. Hence, their results involve interpersonal comparisons, and should be
treated carefully.
11This problem is closely related to Samuelson�s �Fallacy of Large Numbers�[32], which

shows that if an expected utility maximizer rejects a certain bet at all wealth levels, she
should reject any sum of independent repetitions of this bet. However, as pointed out by
many authors (e.g. Ross [30]), allowing for a wealth e¤ect may lead to the acceptance of
the sum of bets. If, on the other hand, expected utility is relaxed, Chew and Epstein [7]
have shown that acceptance of the sum of bets may be consistent with Weighted Utility
and Anticipated Utility.
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risk aversion, it can be shown that the certainty equivalent of the bundled
(compound) lottery, p(2) is exactly twice the certainty equivalent of p: That
is, bundling does not change the risk attitudes of the decision maker. How-
ever, if one allows for wealth e¤ects, this will not be true anymore. That is,
the risk attitudes of the agent will be a function of how �big�the bundle she
evaluates is. This is an important line of research, which we plan to pursue
in the future, since it relates ambiguity aversion (the current paper) to risk
attitudes over a sequence of lotteries (Samuelson [32]).
Stephen Morris [25] takes a strategic approach, and argues that the

unattractiveness of the ambiguous urn is a result of the asymmetry in in-
formation between the experimenter and the subject. This approach may
rationalize a lower willingness to bet on one color from the ambiguous urn,
but when bets on both colors are o¤ered (as in the original Ellsberg example)
the individual should behave non-strategically. Morris argues, along the lines
of �rule rationality,�that individuals utilize their experience from situations
of asymmetric information in responding to Ellsberg�s paradox.
Note that the formal model presented in this paper is silent as to whether

the risks are bundled or repeated. In the latter case, the results could be
interpreted as a �policy�of preferring a sequence of risky bets to a sequence
of ambiguous bets. Hazen [20] shows (similarly to the example in Section 2)
that a risk averse policy maker who is an expected utility maximizer and faces
more than a single repetition of the Ellsberg problem will exhibit uncertainty
aversion. Schneeweiss [39] analyzes the Ellsberg paradox assuming the num-
ber of repetitions approaches in�nity and the utility function is quadratic12.
Both works are limited to the Ellsberg example, and do not explore how gen-
eral the result is13. Furthermore, the �policy�interpretation of the results is
vulnerable to considerable limitations on the rules considered. For example,
the decision maker cannot learn from one repetition to the next (for the opti-
mal strategy in this case see Müller and Scarsini [26]), and can not alternate
(hedge) between di¤erent ambiguous risks14. Hence, the decision maker is

12We thank Gordon Hazen and Hans Schneeweiss for bringing their works to our atten-
tion.
13Both works assume expected utility (and even more restrictive functional forms), while

as shown in Section 2, the only requirment is aversion to mean preserving spreads.
14It is easy to show that if the decision maker faces repeated draws (with replace-

ment) from the two Ellsberg urns, then even if she cannot learn (that is, has to have a
�policy�), mixing between bets on the uncertain (II) urn - that is, choosing a policy of
(IIR; IIB; IIR; IIB; :::) - second order stochastically dominates bets on the risky (I) urn.
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not rational even in the repeated environment.
Note that our notion of bounded rationality included in the �Rule Ratio-

nality�description is distinct from the Case Based Decision Theory (CBDT)
studied by Gilboa and Schmeidler [16]. Their theory is aimed at describing
situations where the state space is unknown to the decision maker. A case in
their theory is described by the triplet: (problem, act, outcome). The deci-
sion maker evaluates each act by her average payo¤ when this act was taken
at �similar�problems she can recall, weighted by how similar the problems
are. Clearly, the theory presented here is not formally related to CBDT.
Here, the decision maker knows the possible states of the world, and uses
this information extensively. However, the notion of �similarity, �which is
used in Rubinstein [31] as well, may be incorporated into the current model.
The decision maker views the singular and the regular environments as sim-
ilar, and it leads her to prefer risky acts over ambiguous acts in the singular
environment as well.

4.2 Uncertainty Aversion

Schmeidler�s [34] de�nition of uncertainty aversion (De�nition 1), which was
used by Gilboa and Schmeidler [15] as well, is nested within the Anscombe-
Aumann [1] framework. This framework has some drawbacks due to its com-
pound lottery structure. Casadesus-Masanell, Klibano¤ and Ozdenoren [6],
who present an axiomatization of Maximin Expected Utility in a completely
subjective world without lotteries, provide an analogue to Schmeidler�s de�-
nition of uncertainty aversion - without objective lotteries.
Other de�nitions of uncertainty aversion, which di¤er from Schmeidler�s,

have appeared in the literature. Epstein [9] de�nes uncertainty aversion
relative to probabilistically sophisticated preferences, while Ghirardato and
Marinacci [13] de�ne it relative to subjective expected utility. A one-stage
axiomatization of expected utility, that allows for objective lotteries, was
suggested by Sarin andWakker [38], but the de�nition of uncertainty aversion
in their original framework is not transparent and will be di¤erent [37] from
Schmeidler�s. Klibano¤, Marinacci and Mukerji [23] employ this framework
while relaxing the Reduction of Compound Lotteries axiom, to de�ne smooth
ambiguity aversion as an aversion to mean preserving spreads in the ex-ante

Hence, risk averse decision maker who faces a sequence of draws will prefer to bet using
the uncertain urn to bets using the risky urn.
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evaluation of an act (similar to risk aversion in objective expected utility).
The exact way in which the behavior described in this paper relates to those
alternative de�nitions, remains for future work.

4.3 �Rule Rationality�and Other Experimental Anom-
alies

An underlying feature of the explanation presented here is that individuals
treat a single draw from an Ellsberg urn (act) the same way they treat mul-
tiple draws from the urn (bundled act). Many studies in psychology have
focused on how individuals update their belief. Although there is no updat-
ing of belief per se in this paper, we believe that there is a close connections
between the two phenomena15. Tversky and Kahneman [40] �rst noted that
people consistently overestimate the distributional similarity between a small
sample and the population, and named this behavior: �the law of small num-
bers.�This goes both ways - from the sample to the population, and vice
versa. Bar Hillel and Wagenaar [3] concentrate on �local representativeness�
bias, when people expect even a short sequence of signals to have the same
proportions of signals as a much longer (or in�nite) sequence. Grether [17]
and Camerer [5] test if individuals and markets are Bayesian and �nd sup-
port for bias in a direction of �exact representativeness,� in which agents
tend to believe that the (unknown) population�s distribution is similar to the
small sample�s distribution. These observations were modeled and applied by
Rabin [28] to a variety of economic scenarios. These behavioral regularities
may illuminate our current study and give our explanation an alternative
motivation: if we reinterpret the prior as representing a �population,�then
the risky population (generated by urn I) second order stochastically domi-
nates the uncertain population (generated by urn II). If the decision maker
exhibits �local representativeness� she expects these relative properties of
the distributions to be maintained even for a small sample (in our case of
size one), and hence will be uncertainty averse. We believe that the relation
between the two phenomena requires further experimental study.
As discussed in the Introduction, two other prominent experimental anom-

alies, that initially seem unrelated to uncertainty aversion, are the one-shot
�Prisoners�Dilemma� and the �Ultimatum Game�. In the �rst example,
almost all normative notions of equilibrium (except when agents have unob-

15We thank the Editor James Dow for pointing out this relation.
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served utility from cooperation) predict that individuals will not cooperate.
Yet, in practice, many subjects do indeed cooperate. In the Ultimatum
Game, the normative backward induction argument predicts that the indi-
vidual who makes the o¤er will leave a minimal share to his opponent, and
the latter will accept any positive o¤er. In practice, most o¤ers are �fair,�
and most respondents reject �unfair� (albeit positive) splits. Explanations
for these phenomena vary, but the one explanation we �nd most compelling
(and which may be viewed as a strategic basis for other explanations), claims
that people do not �understand� that these are one-shot games. Individu-
als play a strategy which is perfectly reasonable (according to some equi-
librium notion) for a repeated game. Thus, people are, in some sense, not
�programmed�for, and therefore �nd it hard to evaluate, singular situations.
Aumann [2] contrasted this �Rule Rationality�with �Act Rationality�. Ho¤-
man, MacCabe and Smith [22] have suggested that in the Ultimatum Game,
the rule to �reject anything less than thirty percent�may be rationalized as
building up a reputation in an environment where the interaction is repeated.
This rule does not apply to the one-shot Ultimatum Game because in that
situation the player does not build up reputation. But since the rule has
been unconsciously chosen, it will not be consciously abandoned16.
The (speculative) relation between the decision theoretic problem studied

in this paper, and other anomalies in game theory, leads us to hypothesize
that rule rationality is a form of limited rationality that should be studied
carefully. Speci�cally, experiments could determine whether certain individ-
uals rely more than others on behavioral rules. If rule rationality is found
to be common, it may call for reconsidering the structure of experiments
in economics and psychology. Currently, most of the experimental litera-
ture identi�es a singular environment as a good experimental design, since
it enables concentration on a speci�c issue. However, if individuals use in
this environment their experience from more �regular�environments, the de-
signer should consider whether the behavior in the experiment is robust to
small perturbations of the environment. An evolutionary model in which
�rule rationality� emerges may illuminate the set of procedures for which
this notion of limited rationality is viable.

16It may be argued that �manners� have evolved in a similar way, and explain the
Proposer behavior in Dictator Games as a result of expected �reciprocity�.
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A Preliminaries

Let  and � be countably additive and �nite set-functions on X : De�ne:

F (x) =
X
t�x

 (t) and F� (x) =
X
t�x

�(t) (15)

Assume  and � are such that:

F (+1) = F� (+1) (16)

Assumption (16) would hold true if, for example,  and � are probability
measures (then (16) is equal to one), or when each is a di¤erence of two
probability measures (then (16) is equal to zero).

De�nition 5 Let  and � be countably additive and �nite set-functions on
X ; and let F and F� be de�ned as in (15) and satisfy (16). The function  
First Order Stochastic Dominates (FOSD) the function � if for every x 2 X :
F (x) � F� (x) with strict inequality for at least one x.
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De�nition 5 is a generalization of the standard de�nition of �rst order
stochastic dominance, and it includes the probability measure as a special
case. It is well known that every decision maker with monotone preferences,
choosing between two distributions ordered by FOSD, will prefer the domi-
nant one.
Assume17: Z +1

�1
F (x)dx =

Z +1

�1
F� (x)dx (17)

That is, the mean of  is equal to the mean of �: For example, if  is the
di¤erence of two probability measures and � � 0 then it implies that the two
probability distributions from which  was derived have the same expected
value.

De�nition 6  Second Order Stochastically Dominates (SOSD) � if (17)
holds and: Z x

�1
F (t)dt �

Z x

�1
F� (t)dt 8 x 2 X

with strict inequality for at least one x:

Claim 1 If  SOSD � then:

U( ) =
X
x2X

u(x) (x)dx >
X
x2X

u(x)�(x)dx = U (�)

for all strictly monotone and strictly concave u:

Proof. The proof is similar to Rothschild and Stiglitz�s [29]: using (16)
instead of assuming probability measures, and (17) instead of assuming equal
expectations.

B Proof of Theorem 1

Let f and g be statewise ranked by FOSD, and:

U
�
f(2)
�
= U

�
g(2)
�

(7�)

17Since all set-functions we shall deal with have �nite variation, all the integrals converge.
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Therefore, there exist at least two states in which f and g di¤er. De�ne for
every s 2 S :

h(s) (x) = �f(s) (x) + (1� �) g(s) (x) (18)

Then we need to show that:

U(h(2)) > U
�
f(2)
�

(19)

Consider the function � de�ned as:

�(s) (x) = f (s) (x)� g (s) (x) (20)

for every x and s.
Let h(2) be the convolution (denoted by ���) of h with h at every state.
U
�
h(2)

�
is the expected utility from this convolution, averaged over all states.

U
�
h(2)

�
=
X
s

q(s)U [h (s) � h (s)] =

=
X
s

q(s)
X
x

X
y

�
�f(s) (x)+

(1� �) g (s) (x)

� �
�f(s) (y)+

(1� �) g (s) (y)

�
u(x+ y) =

=
X
s

q(s)
X
x

X
y

24 �2 (f(s)(x)) (f(s)(y))+

+ (1� �)2 (g (s) (x))(g (s) (y))+
+2�(1� �)(f(s)(x))(g(s)(y))

35u(x+ y) (21)

Let �(2) be the convolution of � with � at every state: We can view U
�
�(2)
�

as the �expected utility� from this convolution (note that it is additive in
the states):

U
�
�(2)
�
=
X
s

q(s)U [�(s) � �(s)] = (22)

=
X
s

q(s)
X
x

X
y

� (s) (x) � (s) (y)u(x+ y) =

=
X
s

q(s)
X
x

X
y

[f(s)(x)� g (s) (x)] [f(s)(y)� g (s) (y)]u(x+ y) =

=
X
s

q(s)
X
x

X
y

24 (f(s)(x))(f(s)(y))+
+(g(s)(x))(g(s)(y))�
�2(f (s) (x))(g (s) (y))

35u(x+ y) (23)
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By substitution of (21) and (23) and utilizing (7�) it follows that:

U(h(2))� U
�
f(2)
�
= �� (1� �)U

�
�(2)
�

(24)

Thus, (19) holds if and only if U
�
�(2)
�
< 0:

Claim 2 In every state in which f and g di¤er: �(s) FOSD 0 (the zero
function) or vice versa.

Proof. Since f and g are statewise ranked by FOSD, then if they di¤er at
state s, they are ranked according to FOSD. Assume f (s) FOSD g(s): Then:

F�(s) (x) = Ff(s)(x)� Fg(s)(x) � 0

The symmetric argument holds when g(s) FOSD f(s):

Lemma 1 Let � be a function, which is the di¤erence of two probability mass
measures and assume � and 0 are ranked according to �rst order stochastic
dominance. Then � can be written as a �nite sum of functions:

� =
LX
l=1

�l (25)

where:

�l(x) = �al;bl;pl(x) =

8<:
pl if x = al
�pl if x = bl
0 OTHERWISE

(26)

with al < bl and jplj � 1: If 0 FOSD � (� FOSD 0) then all pl can be chosen
positive (negative) in the decomposition (26).

Proof. Recall that since � is a di¤erence of probability mass measures, it is
a �nite set function with F� (+1) = 0: Assume 0 FOSD �; i.e.: F�(x) � 0 8
x 2 X with strict inequality for at least one x: Then:

a1 � min fxj�(x) > 0g

exists. Since F� (x) � 0; it follows that for all x < a1: F�(x) = 0: Therefore
F�(a1) = � (a1) : Similarly, there exists

b1 � min fx > a1j�(x) < 0g
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De�ne:

p1 � min f� (a1) ; j� (b1)jg > 0
De�ne �1 = � � �a1b1p1 : It is still true that F�1(x) � 0, since F�1(�) di¤ers
from F�(�) only in the interval [a1; b1] ; and there F� � � (a1) � p1: Note that
�1 is a set-function with at least one less mass point than �:
Hence if �1 6� 0 then 0 FOSD �1 and we can repeat the process, obtaining

iteratively (�2; �3; : : : ; �L). Because each �l has at least one less mass point
than �l�1, and � is �nitely supported (i.e. there exist only �nitely many
points x such that � (x) 6= 0); the sequence is �nite. The sequence has to
stop, at some stage L with �L � 0: Hence � �

PL
l=1 �l; with pl > 0 for all l:

A similar proof holds for the case where � FOSD 0.

Lemma 2 If plpk > 0 then 0 (the zero function) SOSD �l � �k (the convolu-
tion of �l and �k); when �l and �k have the (26) structure.

Proof. The convolution �l � �k is given by:

(�l � �k) (x) =

8>><>>:
plpk if x = al + ak
�plpk if x = al + bk
�plpk if x = bl + ak
plpk if x = bl + bk

F�l��k(x) =
R x
�1 (�l � �k) (t)dt is equal to:

F�l��k(x) =

8<:
pkpl if x 2 [al + ak;min fak + bl; bk + alg]
�pkpl if x 2 [max fak + bl; bk + alg ; bk + bl]
0 OTHERWISE

Therefore: Z x

�1
F�l��k(t)dt � 0

That is, the zero function SOSD �l � �k:

Corollary 2 In every state in which f and g di¤er, the zero function SOSD
�(s) � �(s).
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Proof. Since f and g are statewise ranked by FOSD, by Claim 2 the zero
function FOSD �(s) or vice versa. By Lemma 1, we can decompose every
di¤erence of probability measures set-function �(s) into L(s) functions with
all pl (l = 1; : : : ; L(s)) positive (if 0 FOSD �(s)) or negative (if �(s) FOSD
0). Therefore:

�(s) � �(s) =

0@L(s)X
l=1

�l(s)

1A �
0@L(s)X

k=1

�k(s)

1A =

L(s)X
l=1

L(s)X
k=1

�l(s) � �k(s) (27)

By Lemma 2 each convolution element of the above sum is second order
stochastically dominated by the zero function. Therefore, the zero function
SOSD the sum of those convolutions.

Proof of Theorem 1. Recall from (22) that U
�
�(2)
�
is additive across

states. By Corollary 2 and Claim 1: U [�(s) � �(s)] < 0 in every state in
which f and g di¤er. In states in which f and g are equal, �(s) � 0; and
therefore: U [�(s) � �(s)] = 0. It follows that U

�
�(2)
�
< 0 and (19) holds.
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