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Portfolio Resampling: Review and Critique
Bernd Scherer

A well-understood fact of asset allocation is that the traditional portfolio
optimization algorithm is too powerful for the quality of the inputs.
Recently, a new concept called “resampled efficiency” has been introduced
into the asset management world to deal with estimation error. The
objective of this article is to describe this new technology, put it into the
context of established procedures, and point to some peculiarities of the
approach. Even though portfolio resampling is a thoughtful heuristic, some
features make it difficult to interpret by the inexperienced.

ortfolio optimization suffers from error
maximization.1 Because inputs into the
efficient frontier algorithm are measured
with error, the optimizer tends to pick

those assets with the most attractive features (high
returns and low risks and/or low correlations) and
to short or deselect those with the worst features.
These extremes are exactly the cases in which esti-
mation error is likely to be highest; hence, the pro-
cess maximizes the impact of estimation error on
portfolio weights. If, for example, assets have high
correlations, they appear to the quadratic program-
ming algorithm to be similar, but an algorithm that
takes point estimates as inputs and treats them as
if they were known with certainty will react to tiny
return differences that are well within measure-
ment error.2 In other words, the optimization algo-
rithm is too powerful for the quality of the inputs.
This problem does not necessarily stem from the
mechanism itself; it calls for a refinement of inputs.
To deal with the estimation error, a concept called
“resampled efficiency” has recently been intro-
duced.3 This article describes this new technology,
puts it into the context of established procedures,
and points out some peculiarities of the resampled
efficiency approach.

Visualizing Estimation Error
Portfolio sampling allows an analyst to visualize
the estimation error in traditional portfolio optimi-
zation methods. The estimated parameters used in
asset allocation problems (typically point estimates
of means, variances, and correlations) are calcu-
lated by using only one possible realization of

return history. Even if stationarity (constant mean,
non-time-dependent covariances) is assumed, only
in very large samples can the point estimates for
risk and return inputs equal the true distribution
parameters. The effect of the resulting estimation
error on optimal portfolios can be captured by the
Monte Carlo procedure known as portfolio resam-
pling.4 

Suppose we estimated both variance–
covariance matrix  and return vector by
using T observations, where � is a k × k covariance
matrix of excess returns (asset return minus cash)
and � is a k × 1 vector of average excess returns. The
point estimates are random variables (because they
are calculated from random returns); that is,
another sample of random variables from the same
distribution would result in different estimates.
This situation is called sampling error.5 How can
we capture the randomness of inputs? One answer
is portfolio resampling, which draws repeatedly
from the return distribution. We can create a statis-
tically equivalent sample with T observations (orig-
inal data length), thereby creating a new data set
for the estimation of input parameters by either
drawing T times without replacement from the
empirical distribution (a nonparametric method
known as bootstrapping) or sampling from a multi-
variate normal distribution (a parametric method
termed Monte Carlo simulation). Both methods
yield virtually the same results, but suppose that to
deal with the sampling error, we have chosen the
parametric method.6

By repeating the sampling procedure n times,
we get n new sets of optimization inputs (  to

). For each of these inputs, we can now cal-
culate a new frontier spanning from the minimum-
variance portfolio to the maximum-return portfolio.
We calculate m portfolios along the frontier and save
the corresponding allocation vectors, w11, . . ., w1m
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to wn1, . . . , wnm. Evaluating all n × m portfolios with
the original optimization inputs ( ) will force
all portfolios to plot below the original efficient fron-
tier. The reason is that no weight vector that is
optimal for and  (i = 1, . . ., n) can be optimal
for . Hence, because the weights have been
derived from data containing estimation error, all
portfolio weights lead to portfolios plotting below
the efficient frontier. Estimation error in inputs is
transformed into uncertainty about the optimal allo-
cation vector.

The mechanics of portfolio resampling are best
illustrated through a practical example. Suppose
we download 18 years of data and calculate histor-
ical means and covariances to obtain the inputs
shown in Table 1.7 For these data, running a stan-
dard mean–variance optimization (i.e., minimizing
portfolio risk subject to a return constraint) in which
the returns vary from the return of the minimum-
variance portfolio to the return of the maximum-
return portfolio results in the asset allocations along
the efficient frontier shown in Figure 1.8 For this
example, we calculated m = 25 portfolios, dividing
the return difference between the minimum and
maximum return into 25 steps. 

As most investors familiar with traditional
portfolio optimization would have guessed, the
resulting allocations are very concentrated; some
assets did not even enter the solution. Also, small
changes in risk aversion may lead to widely differ-
ent portfolios. For example, allocation vectors 20
and 23 are quite different in weightings. Given
uncertainty about the degree of an investor’s risk
aversion, this feature of traditional portfolio opti-
mization is unattractive.

Suppose, instead, we applied the resampling
algorithm. In this case, each new weight vector
(calculated from resampled inputs) can be inter-
preted as a set of statistically equivalent weights.

Only the original set of weights, w0, is optimal,
however, for the original set of inputs ( ). All
other portfolios must plot below the efficient fron-
tier. Their weight estimates are the direct result of
sampling error. Figure 2 shows the efficient frontier
and the resampled portfolios that resulted from
using the described resampling technique; the cir-
cles represent the resampled portfolios, and the
efficient frontier can be thought of as their enve-
lope. The dispersion arises because of the great
variation in statistically equivalent weight vectors. 

Increasing the number of draws, n, forces the
data points closer to the original frontier as the
dispersion in inputs becomes smaller. The effect is
equivalent to reducing (eliminating) sampling
error. But the analysis does not tell us where the
new frontier lies—which leads to the next section.

Resampled Efficiency.  The method that
uses resampled efficiency is intended to deal with
the estimation error demonstrated in the previous
section. Portfolios along the so-called resampled
frontier are defined as “. . . averages of the rank
associated mean–variance efficient portfolios”
(Michaud 1998, p. 50). Portfolios that carry Rank 1
are the minimum-variance portfolios; portfolios
that carry rank m are the maximum-return portfo-
lios. Each other portfolio gets a rank in between
that depends on where its expected return ranks.
The distance between the minimum-variance and
the maximum-return portfolio is equally split.

Averaging maintains an important portfolio
characteristic: The weights sum to 1 (even in the
case of constraints). This characteristic is probably
the main practical justification for this procedure,
but keep in mind that there is no economic rationale
derived from the optimizing behavior of rational
agents that supports this method. Hence, it is a
heuristic.  
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Table 1. Historical Means and Covariances for Portfolio Resampling

Asset Covariance, �0 Mean, �0

Equity

Canadian  30.25  15.85  10.26  9.68  19.17  16.79  2.87  2.83  0.39

French  15.85  49.42  27.11  20.79  22.82  13.30  3.11  2.85  0.88

German  10.26  27.11  38.69  15.33  17.94  9.10  3.38  2.72  0.53

Japanese  9.68  20.79  15.33  49.56  16.92  6.66  1.98  1.76  0.88

U.K.  19.17  22.82  17.94  16.92  36.12  14.47  3.02  2.72  0.79

U.S.  16.79  13.30  9.10  6.66  14.47  18.49  3.11  2.82  0.71

Bonds

U.S. 2.87  3.11  3.38  1.98  3.02  3.11  4.04  2.88  0.25

European  2.83  2.85  2.72  1.76  2.72  2.82  2.88  2.43  0.27

Source: Michaud (1998, pp. 17, 19).
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The resampled weight for a portfolio of rank m
(portfolio number m along the frontier) is given by

(1)

where wim denotes the k × 1 vector of the mth
portfolio along the frontier for the ith resampling. 

Suppose we estimate 100 efficient frontiers
(i.e., 1 complete frontier for each set of inputs).
Thus, we also have 100 portfolios for each rank. We
can now simply calculate the average weight for
each asset over all 100 portfolios. Additionally, we
can measure the dispersion of portfolio weights to
appreciate how the uncertainty in inputs feeds
through to the dispersion in outputs. 

Figure 1. Mean–Variance-Efficient Portfolios: Composition

Figure 2. Efficient Frontier and Resampled Portfolios
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The procedure can be summarized as follows:
Step 1. Estimate variance–covariance matrix and

mean vector of historical inputs. (As an
alternative, the inputs could be prespeci-
fied.)

Step 2. Resample from inputs (created in Step 1)
by taking T draws from input distribution.
The number of draws reflects the degree of
uncertainty in the inputs. Calculate new
variance–covariance matrix from sampled
series. Estimation error will result in ma-
trixes that are different from those ob-
tained in Step 1.

Step 3. Calculate efficient frontier for inputs de-
rived in Step 2. Save optimal portfolio
weights for m equally distributed return
points along the frontier.

Step 4. After repeating Steps 2 and 3 many times,
calculate average portfolio weights for each
return point. Evaluate frontier of averaged
portfolios with variance–covariance matrix
from Step 1 to plot the resampled frontier.

Instead of adding up portfolios that share the
same rank, we could add up portfolios that show
the same risk–return trade-off. It can be easily done
by maximizing U = µ – 0.5λm σ2 for varying risk
aversion λm and then averaging the λm-associated
portfolios. Utility-sorted portfolios are theoretically
preferable because they indicate risk–return trade-
offs an investor with a given risk aversion would
actually choose if required to make a choice repeat-
edly in different risk–return environments.

The resampled portfolios shown in Figure 3
reflect greater diversification (more assets have
entered the solution) than the classic mean–
variance-efficient portfolios illustrated in Figure 1.
They also exhibit less-sudden shifts (smooth tran-
sitions) in allocations as return requirements
change. In the eyes of many practitioners, both
characteristics are desirable properties. 

Because of the apparent overdiversification
(relative to return forecasts), the resampled frontier
will have different weight allocations from those of
the traditional frontier and, as shown in Figure 4,

Figure 3. Resampled Portfolios: Composition
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will plot below the traditional frontier. The resam-
pled frontier does not reach the same maximum
return as the traditional frontier because of the re-
sampled frontier’s greater diversification. Whereas
the maximum-return solution in the traditional
frontier is made up of 100 percent investment in the
highest-return asset, the averaging process prohib-
its this kind of solution for the resampled frontier.
The frontiers are similar in risk–return space but
quite different in “weight space,” as Figure 3
shows.

One of the problems with using the average
criterion can be illustrated by close inspection of the

distribution of resampled weights for a particular
rank-associated portfolio. Consider Portfolio Rank
12. From Figure 3, we can judge that Portfolio 12
has an average allocation to U.S. equities of about
23 percent. If we look at the distribution of resam-
pled U.S. equity weights for portfolios ranked 12 as
shown in Figure 5, however, we find that in most
of the runs (more than 500 out of 1,000), the actual
weight given was 0–5 percent. The average of 23
percent seems to be heavily influenced by a few
“lucky” draws (that is, a barbell structure) that led
to significant allocation to U.S. equity. Indeed, the
20–25 percent bin is sparsely populated. I will

Figure 4. Classic Efficient Frontier versus Resampled Efficient Frontier
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Figure 5. Distribution of Resampled U.S. Equity Weights for Portfolio Rank 12
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return to this point later; for now, I want to mention
two additional issues related to Figure 5. First,
averaging over constraint solutions will very likely
result in an average allocation that is below the
constrained solution because there will always be
some draws where the constraint is not binding—
because of the randomness of average-return
inputs. Second, resampling is likely to include
almost all assets in the solution because the likeli-
hood is that at least one favorable draw will allocate
to an asset. 

Measuring Distance. Effectively, the res-
ampling procedure provides the distribution of
portfolio weights. We can now test whether two
portfolios are statistically different. This test can be
viewed as measuring the distance in a k-
dimensional vector space. The Euclidean distance
measure for the distance of a vector of portfolio
weights of portfolio i (denoted wi) with portfolio p
(denoted wp) is given by 

(wp – wi)′(wp – wi), (2)

where wp – wi is equivalent to an active weight.
Statistical distance, however, is computed as

(wp – wi)′ (wp – wi), (3)

where � is the variance–covariance matrix of port-
folio weights. This test statistic is distributed as a
χ2 with degrees of freedom equal to the number of
assets.9

For example, suppose we have two assets, each
with 10 percent mean and 20 percent volatility.
Suppose further that correlation between the assets

is 0.0 and the risk aversion coefficient is 0.2. Then,
the optimal solution without estimation error is 

Now, we calculate the optimal portfolios with-
out adding up constraints. These portfolios, by def-
inition, do not require holdings to add up to 1, in
which case, resampling would make no sense
because all resampled weights would plot on a
straight line (from 100 percent Weight 1 to 100
percent Weight 2). Figure 6 shows the results of
these calculations. We might be tempted to con-
clude that these black circles are not portfolios
(because the assets do not add up), but cash can be
considered a third (filling) asset because cash
would leave marginal risks, as well as total risks,
unchanged. 

Although (as Figure 6 shows) the optimal solu-
tion is 50 percent for both assets, the estimated
weights are scattered around this solution. Com-
paring the vector difference with the critical value
of the χ2 yields a measure of how statistically dif-
ferent a portfolio is. The ellipse in Figure 6 shows
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Figure 6. Estimation Error and Portfolio Weights
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the line of constant density that is consistent with
Expression 3 for the vector distance between the
optimal portfolio without estimation error and its
resamplings. For this two-asset example, lines of
constant density can be obtained from 

where “det” stands for determinant of the matrix
in brackets. 

Portfolios within this ellipse would be treated
as statistically equivalent, whereas portfolios out-
side this ellipse would be treated as significantly
different in portfolio weights. Given this informa-
tion, we can now visually inspect a new portfolio
(new information about markets) to decide
whether it is different enough from the current
portfolio (after accounting for noise in inputs) to be
implemented. In that respect, we could interpret
the area within the ellipse as a no-trade zone.

Introducing long-only constraints (truncating
weights at zero), however, invalidates the normal-
ity assumption for the distribution of portfolio
weights. Michaud (1998) used a different distance
measure, one that is widely applied in asset man-
agement, in recognition that two portfolios with the
same risk and return might actually exhibit differ-
ent allocations. For this approach, the distance
between two portfolios is defined as

(4)

which is equivalent to the squared tracking error.
The procedure runs as follows. 
Step 1. Define portfolio to test difference against.

Calculate Expression 4 for all resampled
portfolios.

Step 2. Sort portfolios by tracking error in de-
scending order (highest on top).

Step 3. Define TEα as the critical tracking error for
the α percent level (i.e., if 1,000 portfolios
are resampled and the critical level is 5
percent, then look at the tracking error of a
portfolio that is 50th from the top). Hence,
all portfolios for which

(5)

are labeled statistically different.
Step 4. As a last step, calculate the minimum and

maximum allocations for each asset within
the confidence region.

For a three-asset example, the uncertainty about the
optimal weights can be visualized, but for higher
dimensions, such visualization becomes difficult. 

Note that similarity is defined with regard to
the optimal-weight vector rather than in terms of
risk and return. Two portfolios could be very sim-
ilar in terms of risk and return but very different in
allocation, which is well known because risk–
return points below the frontier are not necessarily
unique. Nevertheless, this test procedure is intui-
tive. Note also, however, that the dispersion in
weights is large, so it will be difficult to reject the
hypothesis that the portfolios are statistically
equivalent, even if they are not. The power of the
suggested test will hence be low.

Resampling and Linear Regression.  With-
out a long-only constraint, optimal portfolios could
effectively be found by using a simple regression
approach because portfolio optimization in that
case is a linear problem. Suppose we have k time
series of excess returns—that is, total return, R,
minus cash rate, c, with T observations each. Port-
folio construction can then be written as a simple
textbook regression (which can be estimated using
any standard regression software):

y = β1x1 + . . . + βkxk + u

= 1,
xi = Ri – r. (6)

Using any econometrics package or Microsoft
Excel, simply run a regression of 1’s against all asset
returns, excluding an intercept.10 This method will
force the regression through the origin in excess-
return space and, therefore, maximize the Sharpe
ratio.11 The result can be interpreted as coming
closest to a portfolio with zero risk (vector of 1’s
showing no volatility) and unit return and would
thus create an arbitrage opportunity. The regres-
sion coefficients would reflect the portfolio weights
(βi = wi), which might conveniently be rescaled to
sum to 1. 

Alternatively, using the same framework, we
could run a constrained regression (linear con-
straint on portfolio weights) to create portfolios
meeting particular return requirements. This
framework could then be used also to test restric-
tions on individual regression coefficients (esti-
mated portfolio weights) and restrictions on
groups of assets and to test whether the regression
coefficients are significantly different from zero.12 

The regression framework puts a central prob-
lem of portfolio construction into a different well-
known perspective: Highly correlated asset returns
mean highly correlated regressors, with the obvious
consequences of multicollinearity—high standard
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deviations on portfolio weights (regression coeffi-
cients) and identification problems (difficulty in dis-
tinguishing between two similar assets). Simply
downtesting (stepwise elimination of assets starting
with the least-significant asset) and excluding insig-
nificant assets will produce an outcome that is
highly dependent on the order of exclusion, with no
guidance as to where to start. This problem is famil-
iar to both asset allocators and econometricians.

Portfolio resampling can be interpreted as a
simulation approach to arrive at the distribution of
weight estimates via Monte Carlo simulation of
Equation 6. The center of the distribution is calcu-
lated in the same way as in portfolio resampling by
averaging over the coefficient estimates for a par-
ticular asset. Instead of taking the structural form
of the model as given and simulating the error term,
resampling simulates a whole new data set, which
is equivalent to assuming that regressors are sto-
chastic.13 By drawing new return data from the
variance–covariance matrix and reestimating
Equation 6 n times, we can calculate the average
weight for asset j = 1 . . . k via averaging over the
estimated regression coefficients ( ):

(7)

Although such averaging is not necessary for
portfolios without long-only constraints (because
the distribution of the regressors is known), portfo-
lio resampling is more general than the regression

approach. It can also be applied in the case of long-
only constraints, where the weight distribution is
not known. Essentially, this approach requires
bootstrapping the unknown distribution of a
t-statistic. If an asset is, for example, included in 70
of 1,000 runs for a given rank or utility score, it will
get a p-value of 7 percent. This approach can also
be extended through the use of Bayesian analysis
by using standard textbook results. In such analy-
sis, our prior beliefs (priors) are set on the distribu-
tion of portfolio weights instead of asset returns.

Pitfalls in Portfolio Resampling
Estimation error will increase portfolio risk. This
outcome has been captured in the Bayesian litera-
ture on portfolio construction. Consider the sim-
plest case—a two-asset portfolio. In this case, any
combination of the two assets will be efficient. All
resampled portfolios will still plot on the efficient
frontier, and no portfolio will plot below it, although
the frontier in that case might be short because,
sometimes, the order of assets reverses so the aver-
aged maximum-return portfolio will not contain
100 percent of the higher-returning asset. 

For example, suppose we have two uncorre-
lated assets with estimated volatilities of 10 percent
and 15 percent. Suppose we use 60 monthly obser-
vations to estimate the frontier. Average returns
over cash are 4 percent and 2 percent a year. Figure
7 plots the resulting efficient frontiers found by a
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Figure 7. Traditional versus Resampling versus Bayesian Frontiers
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traditional, a resampled, and a Bayesian approach.
The increase in risk is captured only by the Baye-
sian frontier. In the Bayesian method, for the same
expected return (expected returns will not change
with the introduction of estimation error as an
uninformative prior), each portfolio exposes the
investor to more risk because Bayesian methods
leverage up the variance–covariance matrix but
leave the return vector unchanged. In direct con-
trast, estimation error in the resampled frontier
shows up only as a shortening of the frontier, not
as an increase in risk for every return level. Instead,
uncertainty about the mean causes a reduction in
the maximum expected mean return, which is not
plausible. Bayesian methods recognize that the
exclusive use of sample information will not allow
us to tackle the impact of parameter uncertainty on
optimal portfolio choice, or as Nobel laureate
Harry Markowitz (1987, p. 57) put it, “The rational
investor is a Bayesian.” 

Bayesian methods can use either uninforma-
tive or informative priors. Uninformative priors
simply express the possible range of parameter
estimates. Adding an uninformative prior to a set
of return data, therefore, increases the uncertainty
about future returns but not the average outcome.
Because the priors leave the set of efficient portfo-
lios constant, this method has been little used by
practitioners. Informed priors do change the aver-
age expected outcome and thus change the set of
solutions. An informed prior stating that all aver-
age returns are equal will produce the minimum-
variance portfolio; an informed prior stating that
average returns are close to the implied returns of
a benchmark portfolio will move the efficient fron-
tier in the direction of the benchmark portfolio. 

Bayesian analysis attempts to combine sample
information about asset returns with priors about
the return distribution. The more confident
researchers are about their forecasts, the more
weight they give to it. Together, the priors and the
confidence level result in the predictive distribu-
tion. Optimal portfolio choice is then based on the
predictive distribution. This approach is optimal
according to the Neumann–Morgenstern axioms
on expected utility.

For example, suppose two assets possess the
same expected return but one of them has signifi-
cantly higher volatility. We could think of this
example as international fixed-income allocation
on a hedged basis and an unhedged basis. In this
case, most practitioners (and the mean–variance
optimizer) would exclude the higher-volatility
asset from the solution (unless it had some desir-
able correlations). How would resampled effi-
ciency deal with these assets? Repeatedly drawing

from the original distribution would produce
draws for the volatile asset with highly negative
returns as well as draws with highly positive
returns. In the case of the highly positive returns,
quadratic programming would heavily invest in
this asset; in the case of the highly negative returns,
the program would short the asset. Shorting is not
allowed for portfolios with long-only constraints,
however, so the result would be positive allocation
for draws of high positive average returns and zero
allocations for draws of high negative average
returns. 

Unconstrained optimization is different. In the
classic approach, large long positions are offset (on
average) by large negative positions. Consequently,
an increase in volatility would yield an increase in
the average allocation; hence, a worsening Sharpe
ratio would be accompanied by an increase in
weight. This result is not plausible. It arises directly
from the averaging rule in combination with a long-
only constraint, which creates an optionality for the
allocation of the corresponding asset. Assets are
either in or out but are never negative.

This intuitive line of reasoning can be made
explicit with data on the same assets as we used
previously. Suppose we are going to put together
a portfolio of only equity for Canada, France, and
Germany and fixed income for European bonds.
Suppose further that we reduce the sample size to
60 monthly observations, which is a realistic time
frame for most practical applications. We vary the
volatility of only the worst-performing asset, which
is Canadian equities (see Table 1). Now, consider
this asset’s allocation in the maximum-return port-
folio. As Figure 8 shows, even though Canadian
equities have the lowest return, their allocation
peaks in the maximum-return portfolio. The reason
is that in portfolio resampling, as volatility rises
(the Sharpe ratio deteriorates), allocations at the
high-return end rise. So, a deterioration in the risk–
return relationship for Canadian equities is fol-
lowed by an increased weight. This result does not
come from higher volatility leading to higher esti-
mation error; the phenomenon would not arise in
long–short portfolios. It results directly from aver-
aging over long-only portfolios. The long-only con-
straint creates “optionality.” 

One of the basic properties of efficient-set
mathematics is that the efficient frontier does not
contain upward-bending parts.14 An upward-
bending part would imply that one could construct
portfolios superior to the frontier by linearly com-
bining two frontier portfolios. Could such a forbid-
den situation arise when using the concept of
resampled efficiency? 



Portfolio Resampling

November/December 2002 107

For an answer, keep in mind that the difference
between the resampled and the traditional efficient
frontier arises because resampling provides portfo-
lios that are too diversified. Instances can occur in
resampling, however, in which diversification
becomes smaller as the maximum-return solution
is approached (because all maximum-return solu-

tions tend to be concentrated in the high-return
asset anyway). This is exactly what has happened
in the resampled frontier shown in Figure 9. Cer-
tainly, the true test of resampled efficiency is out-
of-sample performance in a Monte Carlo study, but
convex parts of an efficient frontier are difficult to
justify.

Figure 8.  Allocation and Volatility for Canadian Equities

Allocation to Canadian Equities (%)

18

23

28

33

38

43

15 20 25 30 35 40 45 50

Annualized Volatility (%)

Figure 9. Upward-Bending Resampled Frontier

Monthly Return (%)

Efficient Frontier

Resampled Frontier

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.75 2.75 3.75 4.75 5.75 6.75 7.75

Monthly Standard Deviation (%)



Financial Analysts Journal

108 ©2002, AIMR®

Moreover, all resamplings are derived from
the same vector and covariance matrix ( ).
The true distribution, however, is unknown.
Hence, all resampled portfolios will suffer from the
deviation of the parameters  from
�true , �true in much the same way. Averaging will
not help greatly in this case because the averaged
weights are the result of an input vector, which is
itself very uncertain. Hence, it is fair to say that all
portfolios inherit the same estimation error. The
special importance attached to  finally lim-
its the analysis.

Conclusion
Portfolio resampling offers an intuitive way to
develop tests for the statistical difference between
two portfolios (weight vectors). Resampling will
thus be the methodology of choice to test for the
statistical significance of two portfolios. What is not
clear, however, is why averaging over resampled
portfolio weights should represent an optimal port-
folio construction solution to deal with estimation
error. In the case of long–short portfolios, use of
averaged resampled portfolios provides no
improvement over traditional Markowitz solutions
(in fact, the solutions—that is, the frontiers—coin-
cide). In the case of long-only constraints, resam-
pled efficiency leads to more-diversified portfolios,
which are well known to beat Markowitz portfolios
in out-of-sample tests.15 Hence, the result pre-

sented by Michaud (1998) that resampled efficiency
beats simple Markowitz portfolios out-of-sample is
hardly surprising.

What is unclear is the extent to which this
result can be generalized, because portfolio resam-
pling carries with it some unwanted features. Dete-
riorating Sharpe ratios (caused by higher volatility)
lead to increased allocation of those assets in the
high-return portfolios because favorable return
draws lead to large allocations whereas unfavor-
able draws lead to zero allocations at most
(“optionality”). Additionally, the efficient frontiers
may exhibit turning points (a move from concave
to convex). Also interesting is that at least three
assets are needed for the resampling methodology
to show the increased risk present in the case of
estimation error. 

Finally, although the ultimate test of any port-
folio construction methodology is out-of-sample
performance, Markowitz efficiency is not the rele-
vant benchmark for resampled efficiency. Bayesian
alternatives, which have a strong foundation in
decision theory, are. Therefore, a significant avenue
for future research is how resampling compares
with Bayesian alternatives. 

In short, although why resampled efficiency
should be optimal is not clear, resampling remains
an interesting heuristic to deal with the important
problem of error maximization.

Notes
1. Michaud (1989) and Nawrocki (1996) provide good descrip-

tions of the problem.
2. This problem has been extensively reported and empiri-

cally studied. Examples are Best and Grauer (1991), Chopra
and Ziemba (1993), and Jobson and Korkie (1983).

3. Michaud (1998) describes his methodology very lucidly in
his book Efficient Asset Management.

4. Jorion (1992) described portfolio resampling as one way to
address sampling error (the true underlying parameters are
stable, but there are not enough data to estimate them
precisely).

5. Note that resampling deals with sampling error only. In
theory, sampling error in means that arises from not having
enough data can be cured by lengthening the observation
period (in the case of variance, increasing the frequency of
observations would help). Because the involved distribu-
tions are likely to be nonstationary, however (i.e., the mean
and covariance tend to vary over time), enlarging the data
set in this way is not always appropriate. Scherer (2002)
dealt with this trade-off.

6. All calculations have been done in S-PLUS. Resampling
code can be obtained from the author on request.

7. All illustrations in the examples use the original data from
Michaud (1998). For these data, T = 216 and k = 8.

8. For standard mean–variance-efficient frontiers, see
Markowitz (1987) or Sharpe (1970).

9. The idea of this test statistic is that looking at weight differ-
ences only is obviously not enough. Small weight differ-
ences for highly correlated assets might be of higher
significance than large weight differences for negatively
correlated assets.

10. In Excel, fill one column with 1’s and the others with excess
returns, and then follow Excel instructions for multiple
regressions.

11. See also the exposition in Jobson and Korkie (their Equation
19).

12. Britten-Jones (1999) took this route and showed addition-
ally how this test can be interpreted in light of the well-
known Gibbons–Ross–Shanken (1989) procedure.

13. Maddala (2001, p. 600) described how to bootstrap data
rather than residuals.

14. For a review of efficient-set mathematics, see Huang and
Litzenberger (1988).

15. See Jorion or Chopra, Hensel, and Turner (1993).

�̂0 �̂0,

�̂0 �̂0,

�̂0 �̂0,
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