RISK-ADJUSTED PERFORMANCE ANALYSIS

Andreas Steiner
Zurich
May 2001
CONTENTS

1. INTRODUCTION
2. FRAMEWORK
3. DEFINITION AND APPLICATION OF CLASSICAL MEASURES
 1. Sharpe Ratio
 2. Treynor Ratio
 3. Information Ratio
4. M – MEASURES
 1. M²
 2. M³
5. RAPP
6. RELATIONSHIP BETWEEN THE MEASURES
7. DISCUSSION
INTRODUCTION (1/2)

Common wisdom today: Performance is only a *biased* and *noisy* signal for the quality of asset management.

BIAS: Risk-return trade off

NOISE: Skill versus luck

Risk-adjusted performance analysis is about quantifying and analyzing unbiased performance. It can also be used to distinguish skill from luck.

This presentation wants to summarize the best practice concepts and methods in risk-adjusted performance analysis. It is of a descriptive nature.
INTRODUCTION (2/2)

CONSULTANTS SWITZERLAND

- Quantitative performance analysis as a criterion for manager selection has been practiced for about 5 years → a new toy
- Most often requested statistics: Sharpe and Information Ratio

STRUCTURED ALPHA™ (Watson Wyatt)

- **Alpha**: Net Fund Return – Net Benchmark Return. Net = Fees & switching costs
- **Sigma**: Tracking Error = Standard Deviation of Alpha
 → Financial Factors summarized in…
 Investment Efficiency: Net Alpha / TE = IR. Used to rank managers
- **Theta**: Non-financial factors are of importance to trustees: ‘Sleep Well’ factors (loss aversion), ‘Seems Good’ factors (brand names)
- There exists a trade off between financial and Theta factors. That’s why you need WW’s consulting service…
FRAMEWORK

1. CLIENT PREFERENCES

Client likes return, dislikes risk*:

\[U = U(\mu_p, \sigma_p) \]

\[dU = \frac{\partial U}{\partial \mu_p} d\mu_p + \frac{\partial U}{\partial \sigma_p} d\sigma_p \]

\[\frac{\partial U}{\partial \mu_p} > 0 \]

\[\frac{\partial U}{\partial \sigma_p} < 0 \]

*risk is usually defined as the second moment of the return distribution.

2. BENCHMARKING

- **Client** chooses benchmark and sets targets/limits for alpha, beta a.s.o. at inception
- **Portfolio Mgt** controls alpha, beta and beta after inception

3. INDEX MODELS

\[\mu_p - r_f = \alpha + \beta \cdot (\mu_B - r_f) + \varepsilon \]

Validity of index models to analyze performance largely depends on the implementation of benchmarking!
SHARPE RATIO (1/2) – DEFINITION

\[S = \frac{\mu_p - r_f}{\sigma_p} \]

\(\mu_p \) ...Portfolio Return
\(r_f \) ...Riskfree Rate
\(\sigma_p \) ...Portfolio Volatility
SHARPE RATIO (2/2) - APPLICATION

MEASUREMENT

- Annualized portfolio return, portfolio volatility
- Annualized risk-free rate
 - Choice is important because it can change ranking
 - Problematic in an international context
- Aggregation
 - No straight-forward adding-up because of covariance effects between volatilities
- Are negative values ambiguous?

\[
\begin{align*}
\frac{\mu_p - r_f}{\sigma_p} & \quad + \quad \frac{\mu_p - r_f}{\sigma_p} \\
\frac{\mu_p - r_f}{\sigma_p} & \quad - \quad \frac{\mu_p - r_f}{\sigma_p}
\end{align*}
\]

INTERPRETATION

- Summary of the first two moments of the portfolio excess return distribution. Model-free
- Suitable for comparisons across asset classes
- Target in Mean-Variance Optimization
- Does not assume a benchmark. Implicit benchmark is risk-free rate.
- Statistical hypothesis testing: test for non-zero performance
 \[t-\text{Stat} = S \times \sqrt{T} \]
TREYNOR RATIO (1/2) - DEFINITION

\[T = \frac{\mu_P - r_f}{\beta_P} \]

\(\mu_P \) ...Portfolio Return

\(r_f \) ...Riskfree Rate

\(\beta_P \) ...Portfolio Beta

\[\beta = \frac{\sigma_{PB}^2}{\sigma_B^2} = \rho_{PB} \frac{\sigma_P}{\sigma_B} \]

\(\sigma_{PB} \) ...Covariance

\(\rho_{PB} \) ...Correlation
TREYNOR RATIO (2/2) - APPLICATION

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Annualized portfolio return, annualized risk-free rate</td>
<td>▪ Accounts for systematic and unsystematic risk (CAPM-based): Only systematic risk is considered.</td>
</tr>
<tr>
<td>▪ Estimation of beta can be distorted by market timing. Extensions: Squared regression, H/M regression</td>
<td>▪ Comparison across different asset classes problematic (beta is dependent on benchmark)</td>
</tr>
<tr>
<td>▪ Aggregation: Straight-forward. Beta of aggregate is weighted sum of constituent’s betas</td>
<td>▪ Choice of benchmark affects ranking</td>
</tr>
</tbody>
</table>
INFORMATION RATIO (1/3) - DEFINITION

\[IR = \frac{\alpha_P}{TE_P} \]

\(\alpha_P \) \text{ ...Portfolio Alpha}

\(TE_P \) \text{ ...Portfolio Tracking Error}

Active Portfolio Return: Alpha
- Average annual performance
- Jensen’s Alpha

Choice should be consistent to choice of TE definition…
IR (2/3) - TRACKING ERROR DEFINITIONS

\[\mu_P = \alpha + \beta \cdot \mu_B + \varepsilon \]

\[\sigma_P^2 = \beta^2 \cdot \sigma_B^2 + \sigma_\varepsilon^2 = \rho_{PB}^2 \cdot \frac{\sigma_P^2}{\sigma_B^2} \cdot \sigma_B^2 + \sigma_\varepsilon^2 \quad \text{with} \ldots \quad \beta = \frac{\sigma_{PB}}{\sigma_B^2} = \rho_{PB} \frac{\sigma_P}{\sigma_B} \]

\[\sigma_P^2 = \rho_{PB}^2 \cdot \sigma_P^2 + \sigma_\varepsilon^2 \quad \text{TE}_P = \sigma_P \cdot \sqrt{1 - \rho_{PB}^2} = \sigma_\varepsilon \]

...Residual risk = Risk uncorrelated with BM.

\[\text{TE}_P = \sqrt{Var(r_P - r_B)} \quad \text{...Standard deviation of performance} \]

\[\mu_P - \mu_B = \alpha + \beta \cdot \mu_B + \varepsilon - \mu_B = \alpha + (\beta - 1) \cdot \mu_B + \varepsilon \]

\[\sqrt{Var(\mu_P - \mu_B)} = \sqrt{(\beta - 1)^2 \cdot \sigma_B^2 + \sigma_\varepsilon^2} \quad \text{→ For \(\beta \neq 1 \), the Stdev(perf) is always larger than residual risk} \]

\[\text{→ Stdev(perf) depends on benchmark volatility} \]
IR (3/3) - APPLICATION

MEASUREMENT

- Measurement of Alpha & TE with index or factor models makes IR dependent on model specification errors.

INTERPRETATION

- Summary statistic: Active return / active risk trade off, efficiency ratio
- Fundamental Law of Active Mgt:
 \[IR_{\text{ex ante}} = IC \times BR \]

 IC: Information Coefficient
 \[Corr(\text{Forecast } r, \text{Actual } r) \]

 BR: Breadth of strategy
 \# of independent bets taken
- Statistical hypothesis testing: Non-zero alpha signals
 \[t-\text{Stat} = IR \times \sqrt{T} \]
- Generally not consistent with MVO…
M MEASURES - M² (1/2)

\[\mu_{RAP} = \frac{\sigma_B}{\sigma_P} (\mu_P - r_f) + r_f \]

\(\mu_{RAP} \) ...Risk - Adjusted Return
\(\sigma_P \) ...Portfolio Volatility
\(\sigma_B \) ...Benchmark Volatility
\(\mu_f \) ...Portfolio Return
\(r_f \) ...Riskfree Rate

→ Performance is volatility-adjusted by leveraging the fund with risk-free-investments so that the resulting volatility equals the benchmark volatility.

\[\frac{\sigma_B}{\sigma_P} \] ...Leverage Factor \(d \)

\[\mu_{RAP} = d \cdot \mu_P + (1 - d) \cdot r_f \]
M MEASURES - M² (2/2)

- The difference between M² can be interpreted intuitively: Unit of measurement is % → Risk expressed in units of return
- M² rankings are independent of the chosen benchmark (benchmark risk as a scaling factor)
- The M² measure is a transformed Sharpe Ratio and therefore consistent with MPT

\[\mu_{RAP} = \frac{\sigma_B}{\sigma_P} (\mu_p - r_f) + r_f = \sigma_B \cdot S + r_f \]

- M² ranking equals Sharpe Ratio ranking
- Drawback: Correlation risk (timing, selection) is neglected…
M MEASURES - M³ (1/2)

\[\mu_{CAP} = a \cdot \mu_p + b \cdot \mu_B + (1-a-b) \cdot r_f \]

\[\bar{\rho}_{PB} = 1 - \frac{\text{TE}_{PB}^2}{2 \cdot \sigma_B^2} \]

\[a = \frac{\sigma_B}{\sigma_p} \sqrt{\frac{(1-\bar{\rho}_{PB})^2}{(1-\rho_{PB})^2}} \]

\[b = \bar{\rho}_{PB} - \rho_{PB} \sqrt{\frac{(1-\bar{\rho}_{PB})^2}{(1-\rho_{PB})^2}} \]

→ M³ cannot be illustrated graphically in an elegant way (three dimensions)

→ Performance is correlation-adjusted by leveraging the fund with active, passive and risk-free funds so that (1) the resulting volatility equals benchmark volatility and (2) the TE equals the Target TE
M MEASURES - M^3 (2/2)

- M^3 is ‘volatility-risk- and-correlation-risk’-adjusted-performance
- M^3 rankings differ from M^2 and rankings
- If no target tracking error exists, $a = 0$ and M^3 will equal M^2
- M^3 can be used in a forward looking sense: It can provide ex ante guidance how to structure portfolios with TE restrictions (given the stability of distributional characteristics in the future)
- Drawback (of all RAP measures): Timing and selection activities are not decoupled.
RAPP (1/2) …Risk-Adjusted Performance and Positioning Index

\[U(\mu_p, \sigma_p) \approx U(\mu_B, \sigma_B) + \frac{\partial U}{\partial \mu} d\mu + \frac{\partial U}{\partial \sigma} d\sigma \]

\[RAPP \equiv \frac{U(\mu_p, \sigma_p) - U(\mu_B, \sigma_B)}{\partial U / \partial \mu} \approx \alpha + \lambda \cdot TE \]

\[\lambda = \frac{\partial U / \partial \sigma}{\partial U / \partial \mu} \quad \text{...Risk Aversion} \]

\[\alpha \approx d\mu \]

\[TE \approx d\sigma \]
RAPP (2/2)

- The RAPP concept is very flexible (TE targets, for example)

- Utility functions are considered at least problematic by many economists, especially in decision making under risk (‘Homo Oeconomicus’ debate, Behavioral Finance)

- To implement RAPP, the marginal utilities of parameters (risk aversion, for example) have to be quantified. RAPP ranking will depend on these marginal utilities.

- Aggregation across asset classes is achieved by measuring everything in terms of utilities. A new aggregation problem is introduced: aggregating client preferences.

- Non-financial aspects are neglected. Considering the importance of such factors: Is it worth developing and maintaining an internal RAP measure?
RELATIONSHIP BETWEEN MEASURES

Markets: S&P 500, DJ Euro STOXX 50, SPI, MSCI Japan, FTSE 100

Observations:
- RAP strategies are highly correlated
- The ex ante / ex post choice of RAP targets creates significant incentives
DISCUSSION

IT’S YOUR TURN...